
Statistics and Probability Letters 84 (2014) 27–32

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Fractional Poisson processes and their representation by
infinite systems of ordinary differential equations✩

Markus Kreer a, Ayşe Kızılersü b,∗, Anthony W. Thomas b

a CAMPUSERVICE GmbH, Servicegesellschaft der Johann Wolfgang Goethe-Universität Frankfurt, Rossertstrasse 2,
60323 Frankfurt am Main, Germany
b CSSM, The School of Chemistry and Physics, Department of Physics and Mathematical Physics, Adelaide University, 5005, Australia

a r t i c l e i n f o

Article history:
Received 28 June 2013
Received in revised form 5 September 2013
Accepted 20 September 2013
Available online 27 September 2013

Keywords:
Fractional Poisson process
Kolmogorov–Feller equations
Riordan arrays
Infinite matrices
Coagulation–fragmentation equations

a b s t r a c t

Fractional Poisson processes, a rapidly growing area of non-Markovian stochastic pro-
cesses, are useful in statistics to describe data from counting processes whenwaiting times
are not exponentially distributed. We show that the fractional Kolmogorov–Feller equa-
tions for the probabilities at time t can be represented by an infinite linear system of
ordinary differential equations of first order in a transformed time variable. These new
equations resemble a linear version of the discrete coagulation–fragmentation equations,
well-known from thenon-equilibrium theory of gelation, cluster-dynamics andphase tran-
sitions in physics and chemistry.

© 2013 Elsevier B.V. All rights reserved.

1. Introducing fractional Poisson processes

Since the late 1990s there has been a great interest in non-Markovian continuous-time processes, especially those arising
from waiting times between two events that are not exponentially distributed (for a general overview see Embrechts et al.
(1997) and Grandell (1997)) but sub-exponentially, for example (Jumarie, 2001; Laskin, 2003)

prob(Tw < t) = 1 − Eβ(−λtβ) (1)

where prob(Tw < t) is the probability that the waiting time Tw is less than some t , λ > 0, 0 < β ≤ 1 and Eβ is the Mittag-
Leffler function. The Mittag-Leffler function in Eq. (1), has the series representation Eβ(z) =


∞

m=0 z
m/Γ (βm + 1) and is a

fractional generalization of the exponential function; where Γ (x) =


∞

0 sx−1 exp(−s)ds is the Gamma function (for β = 1
the exponential function is recovered).

Starting from thewaiting timedistribution Eq. (1), Laskin (2003) introduced the fractional Poisson process as the counting
process with probability Pβ(n, t) of n items (n = 0, 1, 2, . . .) arriving by a time t . Beghin and Orsingher (2009) pointed out,
that the approach of Laskin (2003) is equivalent to solving their fractional equations

dβ

dtβ
Pβ(n, t) = λ(Pβ(n − 1, t) − Pβ(n, t)), 0 < β ≤ 1, (2)
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where the fractional derivative is taken in the sense of Dzerbayshan–Caputo (e.g. Podlubny (1999, p. 78)), and is defined on
a twice continuously differentiable function f (t) as the usual derivative for β = 1 and for 0 < β < 1 is

dβ

dtβ
f (t) ≡

1
Γ (1 − β)

 t

0

ds
(t − s)β

d
ds

f (s). (3)

Their solution with the initial condition Pβ(n, t = 0) = δn,0 is given by

Pβ(n, t) = (−1)n
∞
j=n


j
n


(−1)j(λtβ)j

Γ (βj + 1)
= (−1)n

∞
j=n


j
n


φβ(j, t) (4)

where the functions φβ(j, t) are defined as

φβ(j, t) ≡ (−1)j
(λtβ)j

Γ (βj + 1)
, j = 0, 1, 2, . . . . (5)

Note that for n = 0 in Eq. (4) we recover theMittag-Leffler functionwith index β , Eβ(−λtβ). This is not surprising as Pβ(0, t)
is the probability of no birth taking place up to time t , i.e. prob(Tw > t) which is nothing else but the complement to the
waiting time probability, Eq. (1). Furthermore, one readily recovers the normalization condition


∞

n=0 Pβ(n, t) = 1.
Eq. (2) together with Eq. (3) are now considered the standard fractional Kolmogorov–Feller equations for a fractional

Poisson process. They are the basis of a fast growing branch of probability theory (e.g. Beghin and Orsingher (2009, 2010),
Beghin and Macci (2013) and Orsingher and Polito (2013)).

We shall show in this letter that the fractional Poisson process Eq. (2) can also be described by an infinite linear system
of ordinary differential equations (ODE) of first order in a transformed time variable for the probabilities Pβ(n, t) on the left-
hand side, and on the right-hand side we have the usual two terms of a standard Poisson process plus infinitely many more
terms consisting of some time-independent constants times Pβ(m, t), and m > n. This result, formulated in Theorem 3.1,
Eq. (8), is what we term the ‘‘ODE-representation of the Kolmogorov–Feller equations’’.

These new equations for the fractional Poisson process bear a striking resemblance to the linear version of the discrete
cluster equations for the Glauber kinetic Isingmodel, as discussed in Binder andMüller-Krumbhaar (1974) and Kreer (1993)
which is briefly discussed in Appendix B, Eq. (B.3). These cluster ODEs describe a typical dynamics in which clusters con-
sisting of n particles, say, can coagulate with other clusters to form larger clusters or fragment to form smaller ones. Thus,
our approach allows us, in principle, to understand the dynamics of the fractional Poisson process in terms of cluster inter-
actions. Consequently, our ‘‘ODE-representation of the Kolmogorov–Feller equations’’ belongs to a wider class of coagula-
tion–fragmentation equations, which are of major interest to the wider community, as they show a variety of interesting
features, such as asymptotic self-similarity for large times (‘‘dynamical scaling’’), gelating at finite time, metastability, etc.
They may also be a tool to understand phenomena of non-equilibrium statistical physics and phase transitions. For further
reading we refer to Spouge (1984), Ball and Carr (1990), Kreer (1993), da Costa (1995), Laurençot and Mischler (2002) and
McBride et al. (2010).

One of the aims of this letter is to bring the community of probabilists dealing with fractional Poisson processes and the
community of analysts and physicists dealing with coagulation–fragmentation equations closer as both subjects seem to be
more related than previously thought.

The structure of the paper is as follows: Before presenting our main result in Section 3 we prove in Section 2 some
necessary Lemma dealing with a combinatorial inversion formula for certain functions.

2. An application of Krattenthaler’s theorem

To prove an essential Lemma,we heuristically define ‘‘infinite’’ vectors from the solutions Eqs. (4) and (5) of the fractional
Poisson process,

[Pβ(0, t), −Pβ(1, t), . . . , (−1)nPβ(n, t), . . .]T

and [φβ(0, t), φβ(1, t), . . . , φβ(n, t), . . .]T .

Wemay then write the solutions Eq. (4) formally as follows

Pβ(0, t)
−Pβ(1, t)
Pβ(2, t)

−Pβ(3, t)
Pβ(4, t)

...

 =



1 1 1 1 1 · · ·

0 1 2 3 4 · · ·

0 0 1 3 6 · · ·

0 0 0 1 4 · · ·

0 0 0 0 1 · · ·

...
...

...
...

...
. . .





φβ(0, t)
φβ(1, t)
φβ(2, t)
φβ(3, t)
φβ(4, t)

...

 , (6)
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