Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A remark on the optimal transport between two probability measures sharing the same copula

A. Alfonsi*, B. Jourdain

Université Paris-Est, CERMICS, Projet MathFi ENPC-INRIA-UMLV, 6 et 8 avenue Blaise Pascal, 77455 Marne La Vallée, Cedex 2, France

ARTICLE INFO

Article history: Received 16 July 2013 Received in revised form 27 September 2013 Accepted 27 September 2013 Available online 8 October 2013

MSC: 60E05 60E15

Keywords: Optimal transport Copula Wasserstein distance Inversion of the cumulative distribution function

ABSTRACT

We study the optimal transport between two probability measures on \mathbb{R}^n sharing the same copula *C*. We investigate the optimality of the image of the probability measure *dC* by the vectors of pseudo-inverses of marginal distributions.

© 2013 Elsevier B.V. All rights reserved.

1. Optimal transport between two probability measures sharing the same copula

Given two probability measures μ and ρ , the optimal transport theory aims at minimizing $\int c(x, y)\nu(dx, dy)$ over all couplings ν with first marginal $\nu \circ ((x, y) \mapsto x)^{-1} = \mu$ and second marginal $\nu \circ ((x, y) \mapsto y)^{-1} = \rho$ for a measurable non-negative cost function c. We use the notation $\nu <_{\rho}^{\mu}$ for such couplings. In the present note, we are interested in the particular case of the so-called Wasserstein distance between two probability measures μ and ρ on \mathbb{R}^n :

$$W_{p,q}(\mu,\rho) = \inf_{\nu < \frac{\mu}{\rho}} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \|x - y\|_q^p \nu(dx, dy) \right)^{1/p}$$
(1.1)

obtained for the choice $c(x, y) = ||x - y||_q^p$. Here \mathbb{R}^n is endowed with the norm $||(x_1, \dots, x_n)||_q = (\sum_{i=1}^n |x_i|^q)^{1/q}$ for $q \in [1, +\infty)$ whereas $p \in [1, +\infty)$ is the power of this norm in the cost function.

In dimension n = 1, $||x||_q = |x|$ so that the Wasserstein distance does not depend on q and is simply denoted by W_p . Moreover, the optimal transport is given by the inversion of the cumulative distribution functions: whatever $p \in [1, +\infty)$, an optimal coupling is the image of the Lebesgue measure on (0, 1) by $u \mapsto (F_{\mu}^{-1}(u), F_{\rho}^{-1}(u))$ where for $u \in (0, 1), F_{\mu}^{-1}(u) = \inf\{x \in \mathbb{R} : \mu((-\infty, x]) \ge u\}$ and $F_{\rho}^{-1}(u) = \inf\{x \in \mathbb{R} : \rho((-\infty, x]) \ge u\}$ (see for instance Theorem 3.1.2 in Rachev and Rüschendorf (1998)). This implies that $W_p^p(\mu, \rho) = \int_{(0,1)} |F_{\mu}^{-1}(u) - F_{\rho}^{-1}(u)|^p du$.

* Corresponding author. E-mail addresses: alfonsi@cermics.enpc.fr (A. Alfonsi), jourdain@cermics.enpc.fr (B. Jourdain).

CrossMark

^{0167-7152/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.spl.2013.09.035

In higher dimensions, according to Sklar's theorem (see for instance Theorem 2.10.11 in Nelsen (2006)),

$$\mu\left(\prod_{i=1}^{n}(-\infty,x_i]\right)=C\left(\mu_1((-\infty,x_1]),\ldots,\mu_n((-\infty,x_n])\right)$$

where we denote by $\mu_i = \mu \circ ((x_1, \ldots, x_n) \mapsto x_i)^{-1}$ the *i*th marginal of μ and *C* is a copula function i.e. $C(u_1, \ldots, u_n) = m \left(\prod_{i=1}^n [0, u_i]\right)$ for some probability measure *m* on $[0, 1]^n$ with all marginals equal to the Lebesgue measure on [0, 1]. The copula function *C* is uniquely determined on the product of the ranges of the marginal cumulative distribution functions $x_i \mapsto \mu_i((-\infty, x_i])$. In particular, when the marginals μ_i do not weight points, the copula *C* is uniquely determined. Sklar's theorem shows that the dependence structure associated with μ is encoded in the copula function *C*. Last, we give the well-known Fréchet–Hoeffding bounds

$$\forall u_1, \ldots, u_n \in [0, 1], \quad C_n^-(u_1, \ldots, u_n) \le C(u_1, \ldots, u_n) \le C_n^+(u_1, \ldots, u_n)$$

that hold for any copula function *C* with $C_n^+(u_1, \ldots, u_n) = \min(u_1, \ldots, u_n)$ and $C_n^-(u_1, \ldots, u_n) = (u_1 + \cdots + u_n - n + 1)^+$ (see Nelsen (2006), Theorem 2.10.12 or Rachev and Rüschendorf (1998), section 3.6). We recall that the copula C_n^+ is the *n*-dimensional cumulative distribution function of the image of the Lebesgue measure on [0, 1] by $\mathbb{R} \ni x \mapsto (x, \ldots, x) \in \mathbb{R}^n$. Also the copula C_2^- is the two-dimensional cumulative distribution function of the image of the Lebesgue measure on [0, 1] by $\mathbb{R} \ni x \mapsto (x, 1 - x) \in \mathbb{R}^2$ and, for $n \ge 3$, C_n^- is not a copula.

In dimension n = 1, the unique copula function is C(u) = u and therefore the optimal coupling between μ and ρ , which necessarily share this copula, is the image of the probability measure dC by $u \mapsto (F_{\mu}^{-1}(u), F_{\rho}^{-1}(u))$. It is therefore natural to wonder whether, when μ and ρ share the same copula C in higher dimensions, the optimal coupling is still the image of the probability measure dC by $(u_1, \ldots, u_n) \mapsto (F_{\mu_1}^{-1}(u_1), \ldots, F_{\mu_n}^{-1}(u_1), \ldots, F_{\rho_n}^{-1}(u_n))$. We denote by $\mu \diamond \rho$ this probability law on \mathbb{R}^{2n} . It turns out that the picture is more complicated than in dimension one because of the choice of the index q of the norm: optimality is guaranteed only when p = q i.e. when the cost $||x - y||^{p_q}$ in (1.1) may be decomposed as the sum of coordinatewise costs.

Proposition 1.1. Let $n \ge 2$, μ and ρ be two probability measures on \mathbb{R}^n sharing the same copula C and $\mathcal{W}_{p,q}(\mu, \rho) = \inf_{\nu < q} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \|x - y\|_q^p \nu(dx, dy) \right)^{1/p}$.

• If p = q, then an optimal coupling between μ and ρ is given by $\nu = \mu \diamond \rho$ and

$$\mathcal{W}_{p,p}^{p}(\mu,\rho) = \int_{[0,1]^{n}} \sum_{i=1}^{n} |F_{\mu_{i}}^{-1}(u_{i}) - F_{\rho_{i}}^{-1}(u_{i})|^{p} dC(u_{1},\ldots,u_{n}) = \int_{[0,1]} \sum_{i=1}^{n} |F_{\mu_{i}}^{-1}(u) - F_{\rho_{i}}^{-1}(u)|^{p} du.$$

• If $p \neq q$, the coupling $\mu \diamond \rho$ is in general no longer optimal. For p < q, if $C \neq C_n^+$, we can construct probability measures μ and ρ on \mathbb{R}^n admitting C as their unique copula such that

$$\left(\int_{\mathbb{R}^n\times\mathbb{R}^n}\|x-y\|_q^p\mu\diamond\rho(dx,dy)\right)^{1/p}>\mathcal{W}_{p,q}(\mu,\rho)$$

For p > q, the same conclusion holds if $n \ge 3$ or n = 2 and $C \ne C_2^-$.

Remark 1.2. Let μ and ρ be two probability measures on \mathbb{R}^n and $\nu <_{\rho}^{\mu}$. For n = 1, ν is said to be comonotonic if $\nu((-\infty, x], (-\infty, y]) = C_2^+(\mu((-\infty, x]), \rho((-\infty, y]))$. Puccetti and Scarsini (2010) investigate several extensions of this notion for $n \ge 2$. In particular, they say that ν is π -comonotonic (resp. *c*-comonotonic) if μ and ρ have a common copula and $\nu = \mu \diamond \rho$ (resp. ν maximizes $\int_{\mathbb{R}^n \times \mathbb{R}^n} \langle x, y \rangle \tilde{\nu}(dx, dy)$ over all the coupling measures $\tilde{\nu} <_{\rho}^{\mu}$). Looking at some connections between their different definitions of comonotonicity, they show in Lemma 4.4 that π -comonotonicity implies *c*-comonotonicity. Since

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \|x - y\|_2^2 \tilde{\nu}(dx, dy) = \int_{\mathbb{R}^n} \|x\|_2^2 \mu(dx) + \int_{\mathbb{R}^n} \|y\|_2^2 \rho(dy) - 2 \int_{\mathbb{R}^n \times \mathbb{R}^n} \langle x, y \rangle \tilde{\nu}(dx, dy),$$

this yields our result in the case p = q = 2.

2. Proof of Proposition 1.1

The optimality in the case q = p, follows by choosing $d_1 = \cdots = d_n = d'_1 = \cdots = d'_n = d''_1 = \cdots = d''_n = 1$, $c_i(y_i, z_i) = |y_i - z_i|^p$, $\alpha = dC$, and $\varphi_i = F_{\mu_i}^{-1}$, $\psi_i = F_{\rho_i}^{-1}$ in the following Lemma.

Lemma 2.1. Let α be a probability measure on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \times \cdots \times \mathbb{R}^{d_n}$ with respective marginals $\alpha_1, \ldots, \alpha_n$ on $\mathbb{R}^{d_1}, \ldots, \mathbb{R}^{d_n}$ and $\varphi_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d'_i}, \psi_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d''_i}$ and $c_i : \mathbb{R}^{d'_i} \times \mathbb{R}^{d''_i} \to \mathbb{R}_+$ be measurable functions such that

$$\forall i \in \{1, \dots, n\}, \quad \inf_{\substack{\nu_i < \varphi_i^{-1} \\ \alpha_i \circ \psi_i^{-1}}} \int_{\mathbb{R}^{d'_i} \times \mathbb{R}^{d''_i}} c_i(y_i, z_i) \nu_i(dy_i, dz_i) = \int_{\mathbb{R}^{d_i}} c_i(\varphi_i(x_i), \psi_i(x_i)) \alpha_i(dx_i).$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/1152780

Download Persian Version:

https://daneshyari.com/article/1152780

Daneshyari.com