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a b s t r a c t

A Bayesian model selection procedure for comparing models subject to inequality and/or
equality constraints is proposed. An encompassing prior approach is used, and a general
form of the Bayes factor of a constrainedmodel against the encompassingmodel is derived.
A simple estimation method is proposed which can estimate the Bayes factors for all
candidatemodels simultaneously by using one set of samples from the encompassing model.
A simulation study and a real data analysis demonstrate performance of the method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the one-way ANOVA model

yij = µi + εij, j = 1, . . . , ni, i = 1, . . . , k, (1)

where yij is the response from the j-th subject under the i-th treatment, µi is the mean of the i-th treatment, and εij’s are
error terms which are independent N(0, σ 2) random variables.

A main interest in the ANOVA is comparing the treatment means µi’s. In particular, in many practical situations
interest lies in comparing models with inequality and/or equality constraints on the treatment means. For example, in a
dose–response study with 4 dose levels, interesting models may be

Mf : no constraint, M3 : µ1 < µ2 < µ3 < µ4,

M1 : µ1 < µ2, M4 : µ1 < µ2 < µ3 = µ4,

M2 : µ1 < µ2, µ1 < µ3, µ1 < µ4, M5 : µ1 = µ2 = µ3 = µ4. (2)

See Klugkist et al. (2005) for illustrative examples.
Inference on inequality/equality constrained models has received a lot of attention in the frequentist literature. See, for

example, Barlow et al. (1972), Robertson et al. (1988), Silvapulle and Sen (2004), Dykstra et al. (2002), and Shyamal et al.
(2005). However, in frequentist methods for testing the hypotheses subject to inequality constraints on the parameters,
statistical distributions of test statistics are often hard to find or are complicated. Also, the frequentist methods may have
problems when non-nested models are compared (Marden, 2000; Klugkist et al., 2005).

Simplemodel selection criteria such as AIC (Akaike, 1987) and BIC (Shwartz, 1978), which incorporatemodel complexity
in terms of the number of parameters in themodel, are inappropriate for comparingmodels subject to inequality constraints.
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For instance, the model M1 in (2) has the same number of parameters as the model Mf and hence the penalty terms in AIC
and BIC would be the same for the two models. To get around this, Anraku (1999) and Kuiper et al. (2011, 2012) proposed
information criteria which incorporate the model complexity from inequality constraints. However, it is often difficult to
calculate the penalty terms of the criteria especially when the number of means is large.

Recently, Bayesian model selection methods in the context of testing hypotheses subject to inequality constraints on
parameters have attracted many practitioners and researchers, since it implicitly account for model complexity induced by
the number of parameters as well as the restricted parameter space of models. See Moreno (2005), Klugkist et al. (2005),
Hoijtink et al. (2008) and Hoijtink (2012).

In practice, interesting models often contain both inequality and equality constraints on parameters, such as the models
M4 andM5 in (2). Inequality constraints are easy to handle since the Bayes factor of a model with only inequality constraints
against the unrestricted, encompassing model is the ratio of posterior and prior probabilities of the restricted region, under
the encompassing model (Klugkist and Hoijtink, 2007). The probabilities can be easily estimated by the proportions of
samples satisfying the restriction. On the other hand, equality constraints cannot be handled in the same way because the
probability of a equality constrained region is zero under a continuous distribution. To get around this, Laudy and Hoijtink
(2007) and Klugkist and Hoijtink (2007) converted equality constraints such as µ1 = µ2 to about equality constraints
|µ1 − µ2| < ε, and apply the method for models with inequality constraints. This procedure is repeated for a decreasing
sequence of ε, ε1 > ε2 > · · ·, until there is no significant change in the Bayes factors for two consecutive εi’s. Wetzels
et al. (2010) showed that the Bayes factor obtained from this iterative procedure converges to the Savage–Dickey density
ratio (Dickey, 1971) when the model is subject to only equality constraints. The iterative procedure has been used to handle
equality constraints in models with both inequality and equality constraints in Mulder et al. (2010), Klugkist et al. (2010),
and Van Wesel et al. (2011). However, the iterative method is only an approximation and it may be time consuming.

In this article, we propose a Bayesian model selection approach for comparing models subject to both inequality and
equality constraints.We adopt the encompassing prior approach proposed by Klugkist et al. (2005) and Hoijtink et al. (2008)
and derive the Bayes factor for a model with a combination of inequality and equality constraints, which is a generalization
of the Bayes factor for a model with only inequality (equality) constraints. We then propose a method which estimates the
Bayes factors for all inequality/equality constrained models under consideration simultaneously by using a set of samples
from the encompassing model. Note that the method requires samples only from the encompassing model even for equality
constrained models, unlike other methods which need to fit reduced dimensional models to handle equality constraints.

The paper is organized as follows. Section 2 introduces priors andderives posteriors of themeans under the encompassing
model. In Section 3, the Bayes factors of models with inequality and equality constraints are derived and a simple estimation
method is proposed. Section 4 provides the results of a simple simulation study, which demonstrate performance of the
proposed method. Section 5 analyzes a real example. Section 6 concludes with a summary and discussion.

2. Prior and posterior

Following the suggestions from Klugkist et al. (2005), we assume that µi’s have a common prior distribution,
independently of each other. As the common prior distribution of µi’s we choose a normal distribution with a variance
proportional to the sample variance σ 2, and as a prior of σ 2 we choose an inverse gamma distribution. Thus, the priors are
given as
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gamma distribution with mode b/a.

Given the likelihood from (1) and the prior (3), it can be shown that the posterior distribution of σ 2 and the conditional
posterior distribution of µi given σ 2 are given as

σ 2
|y ∼ IG


a +

1
2


i

ni, b +
1
2


i


j

(yij − ȳi)2 +
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, i = 1, . . . , k.

Thus, independent samples of (µ, σ 2), µ = (µ1, . . . , µk), can be generated easily from the posterior distributions.
For models with equality constraints on µi’s, µ1 = µ2 = µ3, for instance, we will need the marginal densities of

(µ2 − µ1, µ3 − µ2) to compute Bayes factors in the next section. Thus, we apply linear transformations on µi’s for ease of
exposition. For instance, if we let θ1 = µ1, θ2 = µ2 −µ1, θ3 = µ3 −µ2, and θ4 = µ4 −µ3, the restrictions of the modelM4
in (2) becomes θ2 > 0, θ3 > 0, θ4 = 0 so that the inequality (equality) constraints on µi’s are equivalent to positivity (zero)
constraints on θi’s. Wewill use both θ andµ interchangeably since one can be retrieved easily from the other. Obviously, the
conditional prior and posterior distributions of θ given σ 2 are also multivariate normals and samples of θ can be obtained
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