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h(X1, Y), Y>), and then they assumed (X;, Y>) has a density p and gave the equation which
p should satisfy. In this article, we prove that (Xj, Y,) naturally has a density under more
weak conditions. We again prove a similar result in dimension 3 and give an exact form
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1. Introduction and notations

Let L(F, ) be the set of all 2n-dimensional random variables whose marginal distribution functions are ¥ and 4, re-
spectively. The so-called Monge-Kantorovich problem is to find an optimal coupling of (X, Y) € £(F, §) suchthatE|X —Y|?
attains the minimum. _

In this article, we assume that  has a density f that means ¥ (x) = ffoof(x/)dx’, g hasadensity f. i, v are two measures
on R" such that wu(dx) = f(x)dx, v(dx) = f(x)dx.

In dimension 2 (n = 2), Shen and Zheng (2010) and Xu and Yan (2013) proved that the optimal coupling of & and § has
the following form:

X1, 8(X1, Y2), h(X1, Y2), Yo);

here g, h are some functions depending onf,f and the law of (X1, Y>). Then, Shen and Zheng (2010) and Xu and Yan (2013)
assumed that Z = (X;, Y5) has a density and gave the equation which p(., .) should satisfy.
In this article, in Section 2, we consider the situation with dimension 2 (n = 2) and prove that if

(X1, X2, Y1, Y2),
is the optimal coupling of # and ¢, then the law of (X7, Y») is naturally absolutely continuous with the Lebesgue measure
on R2.
In Section 3, we consider the situation with dimension 3 (n = 3). First, we prove that if (X1, X, X3, Y1, Y3, Y3) is the

optimal coupling of # and 4, then (X;, Y, Y3) has a density naturally. Then we prove that the optimal coupling of # and §
can be assumed to have the following form:

X1, 81(X1, Y2, Y3), 82(X1, Y2, Y3), h(X1, Y2, Y3), Y2, Y3); (1

here the functions g1, g,, h depend on f,f and the law of (X1, Y3, Y3). Let p be the density of (X;, Y5, Y3), and then we give
the expression of p in some sense.
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In the following particular Monge-Ampére equation,
F(x) = det(D’p(x)), (2)
F(x) plays simultaneously the role of right hand side and coefficients due to the structure of its nonlinearity. The standard
argument shows that this equation is elliptic only when D?¢(x) is a positive definite matrix, equivalently, (2) is elliptic
only for functions ¢ that is strictly convex in its domain. To ensure (2) exists a solution, F (x) must be positive. Let C* be the
collectionNOf functions which are Holder continuous~of order «. In this article, we make the following assumptions on f and f:
(H)f,f € C*, a € (0, 1) and for any x, f (x) and f (x) are positive.
Hence we do not need f;f~ are as smooth as that in Xu and Yan (2013). From Theorem 11 in Villani (2002), there exists

unique mappings Vg and V¢* from R" to R" such that Vp#u = v and Vp*#v = u, here ¢ and ¢* are convex functions
from R" to R. Then ¢ and ¢* are convex functions satisfying the following specific Monge-Ampére equations:

f(x) =f(Vox) det(D’p(x)), xe€R" (3)

Fo =f(Vg* () det(D’p*(x), x € R". (4)

Similar to the result in linear elliptic equations, it can be obtained that ¢ € C*“ by using standard but more complicated
continuity methods.
Furthermore, by bootstrapping argument, there is the following proposition.

Proposition 1.1 (Cf. Caffarelli (2002)). If fand f never vanish or if the supports of f andf are convex, then the regularity of V(x)
is “one derivative better” than f and f.

Remark 1.1. The solution is not unique for the general Monge-Ampére equation in a full space since it has a very rich family

of invariants. But for our particular case, det(D?¢(x)) = 7 (éf;‘()x)) , because of the special structure on the right hand side, the

uniqueness of V¢ (x) can be proved (cf. Villani, 2002, Theorem 11); here we require ¢ (x) to be a convex function.

For any function ¢ : R" — R, we denote by Vi¢ = Vy, (X1, ..., Xn), ..., Vad = Vi, (X1, ..., Xp), Vo = (Vi9, ...,
Va¢). If X, Y are two random variables, X ~ Y means X and Y have the same distribution. If 1o is a measure, then X ~ g
means the distribution function of X is given by F(x) = o ((—00, X]).

2. Case with dimension 2
When n = 2 (in the plane), Shen and Zheng (2010) and Xu and Yan (2013) proved that the optimal coupling of & and §
has the following form:
(X1, 8(X1, Y2), h(Xq, Y2), Ya),

for some functions g, h depending on f,f and the law of (Xi, Y2). They assumed that the 2-dimensional random vector
Z = (X1, Y») has a density p(., .) and gave the equation p should satisfy.
In this section, if

(X1, X2, Y1, Y2),

is the optimal coupling of & and 4, we prove that the law of (X, Y>) is naturally absolutely continuous with the Lebesgue
measure on R?. Define mapping

Q : (x1,%) = (Qi(X1,x2), Qa(x1, X2)) = (X1, V2 (X1, X2))

and Range(Q) = {(x1, V29 (x1, X2)) : (X1, X2) € R?}. To prove the main theorem in this section, we need the following two
lemmas.

Lemma 2.1. If E C R™ is a measurable set, T : R™ — R", if

(1) T~1: T(E) — E exists,
(2) T and T~ map the measurable set to measurable set,

then there exists a integrable function J such that

f@dx = /f(TY)Jr(V)dy, vf € L'(T(E)).
E

T(E)

Lemma 2.2. The mapping Q is injective.
Proof. From (3),

det(D*¢(x)) = Va0 (X)V1190(x) — (Vi20)? = fF(x)/f (Ve (x)) > 0.
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