ELSEVIER

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on Monge-Kantorovich problem

Pengbin Feng*, Xuhui Peng

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, PR China

ARTICLE INFO

Article history:
Received 2 September 2013
Received in revised form 18 October 2013
Accepted 18 October 2013
Available online 24 October 2013

Keywords: Monge-Kantorovich problem Optimal transportation Partial differential equations

ABSTRACT

Shen and Zheng (2010) and Xu and Yan (2013) considered the Monge–Kantorovich problem in the plane and proved that the optimal coupling for the problem has a form $(X_1, g(X_1, Y_2), h(X_1, Y_2), Y_2)$, and then they assumed (X_1, Y_2) has a density p and gave the equation which p should satisfy. In this article, we prove that (X_1, Y_2) naturally has a density under more weak conditions. We again prove a similar result in dimension 3 and give an exact form $(X_1, g_1(X_1, Y_2, Y_3), g_2(X_1, Y_2, Y_3), h(X_1, Y_2, Y_3), Y_2, Y_3)$ depending on a certain convex function.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let $\mathcal{L}(\mathcal{F}, \mathcal{G})$ be the set of all 2n-dimensional random variables whose marginal distribution functions are \mathcal{F} and \mathcal{G} , respectively. The so-called Monge–Kantorovich problem is to find an optimal coupling of $(X, Y) \in \mathcal{L}(\mathcal{F}, \mathcal{G})$ such that $\mathbb{E}|X-Y|^2$ attains the minimum.

In this article, we assume that \mathcal{F} has a density f that means $\mathcal{F}(x) = \int_{-\infty}^{x} f(x') dx'$, g has a density \tilde{f} . μ , ν are two measures on \mathbb{R}^n such that $\mu(dx) = f(x) dx$, $\nu(dx) = \tilde{f}(x) dx$.

In dimension 2 (n=2), Shen and Zheng (2010) and Xu and Yan (2013) proved that the optimal coupling of $\mathcal F$ and $\mathcal G$ has the following form:

$$(X_1, g(X_1, Y_2), h(X_1, Y_2), Y_2);$$

here g, h are some functions depending on f, \tilde{f} and the law of (X_1, Y_2) . Then, Shen and Zheng (2010) and Xu and Yan (2013) assumed that $Z = (X_1, Y_2)$ has a density and gave the equation which p(.,.) should satisfy.

In this article, in Section 2, we consider the situation with dimension 2 (n = 2) and prove that if

$$(X_1, X_2, Y_1, Y_2),$$

is the optimal coupling of \mathcal{F} and \mathcal{G} , then the law of (X_1, Y_2) is naturally absolutely continuous with the Lebesgue measure on \mathbb{R}^2 .

In Section 3, we consider the situation with dimension 3 (n=3). First, we prove that if ($X_1, X_2, X_3, Y_1, Y_2, Y_3$) is the optimal coupling of \mathcal{F} and \mathcal{G} , then (X_1, Y_2, Y_3) has a density naturally. Then we prove that the optimal coupling of \mathcal{F} and \mathcal{G} can be assumed to have the following form:

$$(X_1, g_1(X_1, Y_2, Y_3), g_2(X_1, Y_2, Y_3), h(X_1, Y_2, Y_3), Y_2, Y_3);$$
 (1)

here the functions g_1 , g_2 , h depend on f, \tilde{f} and the law of (X_1, Y_2, Y_3) . Let p be the density of (X_1, Y_2, Y_3) , and then we give the expression of p in some sense.

^{*} Corresponding author. Tel.: +86 15010221272.

E-mail addresses: fengpengbin11@mails.ucas.ac.cn (P. Feng), pengxuhui@amss.ac.cn (X. Peng).

In the following particular Monge-Ampère equation,

$$F(x) = \det(D^2 \varphi(x)),\tag{2}$$

F(x) plays simultaneously the role of right hand side and coefficients due to the structure of its nonlinearity. The standard argument shows that this equation is elliptic only when $D^2\varphi(x)$ is a positive definite matrix, equivalently, (2) is elliptic only for functions φ that is strictly convex in its domain. To ensure (2) exists a solution, F(x) must be positive. Let C^α be the collection of functions which are Hölder continuous of order α . In this article, we make the following assumptions on f and \tilde{f} :

(H)
$$f, \tilde{f} \in C^{\alpha}, \alpha \in (0, 1)$$
 and for any $x, f(x)$ and $\tilde{f}(x)$ are positive.

Hence we do not need f; \tilde{f} are as smooth as that in Xu and Yan (2013). From Theorem 11 in Villani (2002), there exists unique mappings $\nabla \varphi$ and $\nabla \varphi^*$ from \mathbb{R}^n to \mathbb{R}^n such that $\nabla \varphi \# \mu = \nu$ and $\nabla \varphi^* \# \nu = \mu$, here φ and φ^* are convex functions from \mathbb{R}^n to \mathbb{R} . Then φ and φ^* are convex functions satisfying the following specific Monge–Ampère equations:

$$f(x) = \tilde{f}(\nabla \varphi(x)) \det(D^2 \varphi(x)), \quad x \in \mathbb{R}^n$$
(3)

$$\tilde{f}(x) = f(\nabla \varphi^*(x)) \det(D^2 \varphi^*(x)), \quad x \in \mathbb{R}^n. \tag{4}$$

Similar to the result in linear elliptic equations, it can be obtained that $\varphi \in C^{2,\alpha}$ by using standard but more complicated continuity methods.

Furthermore, by bootstrapping argument, there is the following proposition.

Proposition 1.1 (Cf. Caffarelli (2002)). If f and \tilde{f} never vanish or if the supports of f and \tilde{f} are convex, then the regularity of $\nabla \varphi(x)$ is "one derivative better" than f and \tilde{f} .

Remark 1.1. The solution is not unique for the general Monge–Ampère equation in a full space since it has a very rich family of invariants. But for our particular case, $\det(D^2\varphi(x)) = \frac{f(x)}{\bar{f}(\nabla\varphi(x))}$, because of the special structure on the right hand side, the uniqueness of $\nabla\varphi(x)$ can be proved (cf. Villani, 2002, Theorem 11); here we require $\varphi(x)$ to be a convex function.

For any function $\phi : \mathbb{R}^n \to \mathbb{R}$, we denote by $\nabla_1 \phi = \nabla_{x_1} \phi(x_1, \dots, x_n), \dots, \nabla_n \phi = \nabla_{x_n} \phi(x_1, \dots, x_n), \quad \nabla \phi = (\nabla_1 \phi, \dots, \nabla_n \phi)$. If X, Y are two random variables, $X \sim Y$ means X and Y have the same distribution. If μ_0 is a measure, then $X \sim \mu_0$ means the distribution function of X is given by $F(x) = \mu_0((-\infty, x])$.

2. Case with dimension 2

When n=2 (in the plane), Shen and Zheng (2010) and Xu and Yan (2013) proved that the optimal coupling of $\mathcal F$ and $\mathcal G$ has the following form:

$$(X_1, g(X_1, Y_2), h(X_1, Y_2), Y_2),$$

for some functions g, h depending on f, \tilde{f} and the law of (X_1, Y_2) . They assumed that the 2-dimensional random vector $Z = (X_1, Y_2)$ has a density p(., .) and gave the equation p should satisfy. In this section, if

$$(X_1, X_2, Y_1, Y_2),$$

is the optimal coupling of \mathcal{F} and \mathcal{G} , we prove that the law of (X_1, Y_2) is naturally absolutely continuous with the Lebesgue measure on \mathbb{R}^2 . Define mapping

$$Q: (x_1, x_2) \to (Q_1(x_1, x_2), Q_2(x_1, x_2)) = (x_1, \nabla_2 \varphi(x_1, x_2))$$

and Range(Q) := $\{(x_1, \nabla_2 \varphi(x_1, x_2)) : (x_1, x_2) \in \mathbb{R}^2\}$. To prove the main theorem in this section, we need the following two lemmas.

Lemma 2.1. If $E \subseteq \mathbb{R}^m$ is a measurable set, $T : \mathbb{R}^m \to \mathbb{R}^m$, if

- (1) $T^{-1}: T(E) \rightarrow E$ exists,
- (2) T and T^{-1} map the measurable set to measurable set,

then there exists a integrable function I_T such that

$$\int_{T(E)} f(x)dx = \int_{E} f(Ty)J_{T}(y)dy, \quad \forall f \in L^{1}(T(E)).$$

Lemma 2.2. The mapping Q is injective.

Proof. From (3).

$$\det(D^2\varphi(x)) = \nabla_{22}\varphi(x)\nabla_{11}\varphi(x) - (\nabla_{12}\varphi)^2 = f(x)/\tilde{f}(\nabla\varphi(x)) > 0.$$

Download English Version:

https://daneshyari.com/en/article/1152790

Download Persian Version:

https://daneshyari.com/article/1152790

Daneshyari.com