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a b s t r a c t

Weconsider the squared Euclidean interpoint distances (IDs) amongmultivariate Bernoulli
observations and determine the mean, covariance and the distribution of the IDs within
a single group or across two groups. We discuss testing the equality of two distribution
functions when the number of variables is large and exceeds the number of observations.
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1. Introduction

The aimof this article is to examine the distribution of IDswithin andbetween samples drawn frommultivariate Bernoulli
(MB) distributions. Given a sample of nx observations, one can represent them as nodes of a complete graph with nx vertices
andmx =

 nx
2


edgeswhoseweights are the squared IDs. The distribution of IDs constitutes the engine ofmany graph-based

multivariate techniques such as cluster analysis and minimal spanning trees (MST). Also called the Hamming distance in
information theory (Hamming, 1950), the squared IDs of Bernoulli data are often used in clustering algorithms to examine
themultivariate structure of data in high dimensions (Gasieniec et al., 2004). IDs are used in gene expression (Xu et al., 2001)
analysis, hotspot detection (Patil et al., 2006), and disease clustering (Assuncão et al., 2006), among others. There are well-
known connections between the MST and the single-linkage clustering algorithm (Gower and Ross, 1969), both of which
are functions of the IDs.

One can find numerous uses of IDs when the underlying distribution of the observations is assumed to be absolutely
continuous. One reason is to avoid ties among IDs. To obtain a unique MST, one must ensure that the vertices are distinct
and represent observations from an absolutely continuous distributions so that ties occur with probability zero. In practice,
when the observations are drawn from discrete distributions such as MB or multinomial, ties occur among the IDS. Ties
do not cause much difficulty in the testing problem we consider because the dimension is large. The MB distribution is a
cornerstone of statistical modeling and there are numerous applications that require modeling binary data. Wilber et al.
(2002) consider modeling and variable selection for high-dimensional MB data to evaluate the importance of microbial
communities on crop productivity by their DNA profiles obtained from soil samples. These community DNA fingerprints
are represented in the form of high-dimensional binary vectors. Modarres (2011) discusses methods of generating high
dimension MB vectors.

Suppose X = {Xi} for i = 1, . . . , nx is a sample of independent and identically distributed random vectors in {0, 1}d
drawn from an MB distribution with mean vector P, covariance matrix 6 and distribution function (DF) F . We use the
notation X ∼ MB(P, 6). Similarly, suppose Y = {Yj} for j = 1, . . . , ny is drawn from an MB(P∗, 6∗) and DF G. We also
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assume that the X and Y samples are independent. We are interested to test the hypotheses H0 : F = G against general
alternativesHa : F ≠ Gwhen d > max(nx, ny). The sample covariance of high dimensional Bernoulli observations is singular
and a poor estimate of the population covariance matrix in low sample size experiments. This rules out the use of classical
multivariate approaches that require estimating the covariance of the observations.

There are not many articles on the exact distribution of the IDs in the literature. When observations are normally
distributed, Rohlf (1975) suggests a gap test to detection outliers using the longest edge of the MST. As noted by Caroni
and Prescott (1995) the assumption of the independence of the IDs is questionable. Bonetti and Pagano (2005) consider
discrete observations and use the asymptotic normality of the empirical DF of the IDs evaluated at a finite number of values
to detect spatial disease clusters. Jammalamadaka and Janson (1986) study the asymptotic distribution of small IDs in a
sample.

The article covers one sample and two-sample cases and obtains the mean, covariance and the distribution of IDs under
an MB distribution. The next section treats the one-sample case, determines the mean and covariance and obtains the
probability mass function of the IDs between any two randomly selected observations from an MB distribution. Section 3
establishes the distribution of IDs across two groups and derives their means and covariances. Section 4 considers testing
H0 : F = G when the number of variables exceeds the number of observations and report on a Monte Carlo study designed
to examine the test statistics. The last section is devoted to summary.

2. One sample IDs

The random vector Xi = (Xi1, . . . , Xid) has a d-variate Bernoulli distribution with the probability mass function P(d)
=

Pr(Xi1 = k1, . . . , Xid = kd) where kj ∈ {0, 1} for j = 1, . . . , d and i = 1, . . . , nx. The mean is denoted by P, and
the covariance with 6. The vector of central moments captures all 2-way or higher level dependences that might exist
between the components of X. The marginal distribution of any set of the components of Xi is MB with means, variances
and covariances obtained from the corresponding elements of P and 6. Since the sum of the 2d probabilities must equal
one, one needs 2d

− 1 parameters to fully describe an MB distribution. A d-variate MB distribution can be represented as a
multinomial distribution with 2d cells and 2d

− 1 parameters. The squared ID between Xi and Xj is defined as

d2(x)ij = (Xi − Xj)
′(Xi − Xj) =

d
r=1

(Xir − Xjr)
2

=

d
r=1

T(x)ijr , (1)

for 1 ≤ i < j ≤ nx. One can show that d2(x)ij is a proper distance function since it satisfies (a) d2(x)ij = 0 if and only if Xit = Xjt

for t = 1, . . . , d, (b) d2(x)ij = d2(x)ji, and (c) d2(x)ij ≤ d2(x)ik + d2(x)kj for any k ≠ i and k ≠ j. One can establish the triangle
inequality by maximizing d2(x)ij and minimizing d2(x)ik + d2(x)kj. The maximum of d2(x)ij is d, which occurs when Xit ≠ Xjt for
t = 1, . . . , d. The minimum value of d2(x)ik + d2(x)kj is 1 + (d − 1) = d and occurs when Xkt = Xit for all but one position,
t = 1, . . . , d, thus, forcing Xkt and Xjt to be different in d − 1 positions since k ≠ i and k ≠ j. In other cases, d2(x)ij is strictly
less than d2(x)ik + d2(x)kj for any k ≠ i and k ≠ j.

2.1. Means and covariances

Let T(x)ij = (T(x)ij1, . . . , T(x)ijd) be a vector in {0, 1}d corresponding to the disagreements between observations Xi and Xj.
One can show that T(x)ij ∼ MB(θ(x)ij, 0(x)ij,ij) with the mean being

θ(x)ijr = pr(T(x)ijr = 1) = 2pr(1 − pr), (2)

and the variances being γ(x)rr = 2pr(1 − pr)(1 − 2pr(1 − pr)). The covariances are given by

Cov(T(x)ijr , T(x)ijs) = 2σrs(2σrs + (1 − 2pr)(1 − 2ps)), (3)

where σrs = Cov(Xir , Xis) for r, s = 1, . . . , d. One can obtain the higher level dependences among the elements of T(x)ij to
fully specify the MB distribution. Let c = mx × d and let T = (T(x)ij) for 1 ≤ i < j ≤ nx be a vector in [0, 1]c composed of
mx d-dimensional vectors T(x)ij. The vector T has a c-dimensional MB distribution with mean composed ofmx copies of θ(x)ij
and covariancematrix0x = (0(x)ij,kh) = Cov(T(x)ijr , T(x)khs). Themain diagonalmatrices of0x are0(x)ij,ij and the off-diagonals
are 0(x)ij,kh with entries

γ(x)rs = Cov(T(x)ijr , T(x)khs) = σrs(1 − 2pr)(1 − 2ps)IC (4)

where IC = 1 if (i, j) and (k, h) share an index, 1 ≤ i < j ≤ nx, 1 ≤ k < h ≤ nx and zero, otherwise. When i = k and j = h
the covariance is given by Eq. (3).

There are tx =
mx

2


pairs of IDs among the mx =

 nx
2


distances on nx data points. One can show that there are

mx(nx−2) = nx(nx−1)(nx−2)/2 pairs of dependent distances among the tx pairswhile the rest of the pairs are independent.
Two IDs d2(x)ij and d2(x)kh are dependent if they have an index in common. Since i < j and k < h, the only remaining dependence
patterns are obtainedwhen (i = k)∨(j = h)∨(j = k)∨(j = h). Note that Cov(d2(x)ij, d

2
(x)kh) =

d
r=1

d
s=1 Cov(T(x)ijr , T(x)khs).
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