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a b s t r a c t

The limit behavior of the optimal bandwidth sequence for the kernel distribution function
estimator is analyzed, in its greatest generality, by using Fourier transform methods. We
show a class of distributions for which the kernel estimator achieves a first-order improve-
ment in efficiency over the empirical estimator.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The kernel estimator of a distribution function was introduced independently by Tiago de Oliveira (1963), Nadaraya
(1964) andWatson and Leadbetter (1964) as a smooth alternative to the empirical estimator. It is defined as the distribution
function corresponding to the well-known kernel density estimator. Precisely, given independent real random variables
X1, . . . , Xn with common and unknown distribution function F , assumed to be absolutely continuous with density function
f , the kernel estimator of F(x) is

Fnh(x) = n−1
n

j=1

K

h−1(x − Xj)


,

where h > 0 is the bandwidth and the function K will be referred to as the integrated kernel, since it is assumed that K(x) = x
−∞

k(y)dy for some integrable function k, called kernel, having unit integral over the whole real line.
Classical references on kernel distribution function estimators include Yamato (1973), which provided mild necessary

and sufficient conditions for its consistency in uniform norm, Azzalini (1981), Swanepoel (1988) and Jones (1990) on asymp-
totic squared error analysis of the estimator, or Sarda (1993); Altman and Léger (1995) and Bowman et al. (1998), and more
recently Polansky and Baker (2000) and Tenreiro (2006), on data-driven bandwidth selection. There are also other recent pa-
pers on different aspects of kernel distribution function estimation, like Tenreiro (2003), Swanepoel and Van Graan (2005),
Janssen et al. (2007), and Giné and Nickl (2009), Berg and Politis (2009); Chacón and Rodríguez-Casal (2010); Mason and
Swanepoel (2012) or Tenreiro (2013). See Servien (2009) for a detailed survey on distribution function estimation, not lim-
ited to kernel-type methods.
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This paper is devoted to the study of the kernel distribution function estimator from the point of view of the mean inte-
grated squared error,

MISE(h) ≡ MISEn(h) = E


∞

−∞

{Fnh(x)− F(x)}2dx.

In this sense, the optimal bandwidth h0n is the value of h > 0 minimizing MISE(h). The existence of such a bandwidth was
proved in Theorem 1 of Tenreiro (2006) under very general assumptions, and Proposition 2 in the same paper showed that
h0n → 0 whenever the Fourier transform of k is not identically equal to 1 on any neighborhood of the origin. This condition
can be considered mild as well, since it is satisfied for any finite-order kernel; however, it does not hold for a superkernel
(see Chacón et al., 2007).

The purpose of this note is to showhow to use Fourier transform techniques for the analysis of kernel distribution estima-
tors. Particularly, expressing the MISE in terms of characteristic functions allows us to obtain a result on the limit behavior
of the optimal bandwidth sequence in its most general form so that it also covers the case of a superkernel, and to explore its
consequences showing the peculiar properties of the use of superkernels and the sinc kernel in kernel distribution function
estimation. Precisely, it is shown in Section 2 that in some situations the sequence h0n does not necessarily tend to zero.
Moreover, we exhibit a class of distributions for which the kernel distribution estimator presents a first-order improvement
over its empirical counterpart, opposite to the usual situation, where only second-order improvements are possible (see
Remark 3). Our findings are illustrated in Section 3 through two representative examples.

2. Main results

Recall fromChacón and Rodríguez-Casal (2010) that the kernel distribution function estimator admits the representation

Fnh(x) =


Fn(x − hz)dK(z), (1)

where Fn denotes the empirical distribution function (here and below integrals without integration limits are meant over
the whole real line). Using this, and standard properties of the empirical process, it is possible to obtain a decomposition of
MISE(h) = IV(h)+ ISB(h), where the integrated variance IV(h) =


Var{Fnh(x)}dx and the integrated squared bias ISB(h) =

{E[Fnh(x)] − F(x)}2dx can be expressed in the following exact form:

IV(h) = n−1
 

F

x − h(y ∨ z)


− F(x − hy)F(x − hz)


dK(y)dK(z)dx, (2)

ISB(h) =


{F(x − hy)− F(x)}{F(x − hz)− F(x)}dK(y)dK(z)dx, (3)

with y ∨ z standing for max{y, z}.
Note that the representation (1) and the exact expressions (2) and (3) alsomake sense for h = 0, implying that the kernel

distribution estimator reduces to the empirical distribution function forh = 0, forwhich thewell-knownMISE formula reads
MISE(0) = IV(0) = n−1


F(1−F)wheneverψ(F) =


F(1−F) is finite. Moreover, it is not hard to check that


|x|dF(x) <

∞ and


|y k(y)|dy < ∞ ensure that MISE(h) is finite for all h > 0, so those two minimal conditions will be assumed
henceforth. Note that the required condition that F have a finite mean is slightly stronger than ψ(F) < ∞ since ψ(F) ≤

2


|x|dF(x).

2.1. Limit behavior of the optimal bandwidth sequence

Denote by ϕg the Fourier transform of a function g , defined as ϕg(t) =

eitxg(x)dx. As in Chacón et al. (2007), the key

to understand the limit behavior of the optimal bandwidth sequence is to use Fourier transforms to express the MISE crite-
rion. Abdous (1993) provided a careful account of the necessary conditions under which theMISE can be expressed in terms
of Fourier transforms. The proof of his Proposition 2 implicitly derives formulas for ISB(h) and IV(h) in terms of ϕk and ϕf
for h > 0. We reproduce this result here for completeness, and show that it can be extended to cover the case h = 0 as well.

Theorem 1. If


|x|dF(x) < ∞ and


|y k(y)|dy < ∞ then, for all h ≥ 0, the IV and ISB functions can be written as

IV(h) = (2π)−1n−1


t−2
|ϕk(th)|2{1 − |ϕf (t)|2}dt,

ISB(h) = (2π)−1


t−2
|1 − ϕk(th)|2|ϕf (t)|2dt.

Particularly, note that for h = 0 the previous result yields a Parseval-like formula for distribution functions,

ψ(F) =


F(1 − F) = (2π)−1


t−2

{1 − |ϕf (t)|2}dt, (4)
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