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a b s t r a c t

Phylogenetic trees are commonly used to model the evolutionary relationships among a
collection of biological species. Over the past fifteen years, the convergence properties for
Markov chains defined on phylogenetic trees have been studied, yielding results about the
time required for such chains to converge to their stationary distributions. In this work we
derive an upper bound on the relaxation time of twoMarkov chains on rooted binary trees:
one defined by nearest neighbor interchanges (NNI) and the other defined by subtree prune
and regraft (SPR) moves.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In biology, it is often of interest to study the patterns of evolution among a collection of species. Typical assumptions
are that the species have evolved from a common ancestor and that the process of speciation results in the formation of
two new species at a single point in time. To visually describe these assumptions, biologists commonly use a rooted, binary
tree called a phylogenetic tree. This undirected, acyclic graph has n external vertices, called leaves, and n− 2 internal nodes
of degree 3. The graph also has one node of degree 2 that shall be termed the root. Markov chain Monte Carlo methods are
frequently used to estimate the distribution of these trees givenDNA sequences at the leaves. Therefore, understanding rates
of convergence of Markov chains widely used in phylogenetics is important in efficiently estimating phylogenetic trees.

While a considerable amount of work has been done in the area of mixing times for Markov chains, the application of
these techniques to phylogenetics has only been considered in the past fifteen years. Diaconis and Stroock (1991) develop
inequalities that are integral to our study of relaxation andmixing times. In particular, they establish bounds on the spectral
gap of the transition matrix of an irreducible, aperiodic, and reversible Markov chain. Aldous (2000) explores the idea of
using chain coupling to establish bounds on the mixing time of a Markov chain on unrooted phylogenies. His work gives an
O(n3) upper bound on the relaxation time of a chainwhere a step of the chain consists of removing a leaf from a tree and then
attaching it to another edge. Aldous (2000) also expands the concepts brought forth by Diaconis and Stroock (1991), proving
that the relaxation timeof his chain is boundedbelowbyO(n2). He conjectures that the relaxation time is also bounded above
by O(n2), and Schweinsberg (2002) later proves Aldous’s conjecture using the method of distinguished paths.

Randall and Tetali (1999) investigate the time required for a Markov chain on rooted phylogenetic trees to converge to
its stationary distribution. Their chain moves about the set Tn of n-leaf rooted phylogenetic trees by performing at each step
of the chain a tree rearrangement similar to those in one of the Markov chains we describe below. They also establish that
the mixing time of the chain under study is O(n5 log n).
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Fig. 1. Example SPRmoves. Tree x is split into two subtrees shown to the right along the branchmarked with a black dot. Tree y1 is formed by re-attaching
the rightmost subtree to the branch ancestral to the clade containing leaves r5 and r6 . Tree y2 is formed by re-attaching the leftmost subtree to the branch
ancestral to leaf r1 . The tree y3 is formed by re-attaching the two branches extending back from the roots of the trees formed by splitting x.

In theworkwe present here, we establish upper bounds on the relaxation time of two particularMarkov chains on rooted
binary trees. One of theseMarkov chainsmoves about Tn in a fashion similar to the chain of Aldous (2000) and Schweinsberg
(2002). We add some conventions to these tree rearrangements in order to handle situations that arise with rooted trees,
but that do not occur with unrooted trees. The other Markov chain moves about the tree space by making moves similar to
those in the work of Randall and Tetali (1999).

2. Background and notation

Let Tn be the set of n-leaf rooted trees, having cardinality cn ≡ (2n − 3)!! (Felsenstein, 2004). A homogeneous Markov
chain {Xt}t≥0 on Tn is defined via a transition probability matrix of P(x, y) = Pr(Xm+1 = y | Xm = x), for each x, y ∈ Tn. We
assume that P(·, ·) satisfies the usual regularity conditions ensuring existence and uniqueness of a stationary distribution
π(·). In this paper we focus on two types of transitions on Tn: (1) subtree prune and regraft (SPR) and (2) nearest neighbor
interchange (NNI).

An SPR transition consists of choosing an edge uniformly at random and pruning the subtree that descends from this
edge. The pruned subtree is viewed as being rooted at the node that descends from the selected edge, keeping the edge
extending out from this root. The remaining tree is viewed as being rooted at the most recent common ancestor (MRCA)
of the remaining leaves, with an added edge that extends back from this tree. An edge is randomly selected (from either
of the two subtrees) and the edge extending back from the root of the other subtree is attached to this edge. The root of
the resulting tree is either the root of the subtree to which the edge is attached (when the randomly selected edge for re-
attachment is not the one extending back from the root) or is the node formed by re-attaching the subtree (when the edge
selected for re-attachment is the one extending back from the root). Fig. 1 gives an example of three possible SPR moves.

An NNI transition is performed by first choosing an internal node (other than the root node) to be the target node. The
target node has two child nodes and a sibling node. Two of these three nodes, along with their descendant subtrees, will be
selected to become the new children of the target node. With probability 0.5, we select the two current children (and the
tree does not change), and with probability 0.5 we select the sibling node and one of the two children at random. In this
situation, the child that is not selected becomes the new sibling of the target node. Let {Xt}t≥0 be theMarkov chain resulting
from SPR transitions and {Yt}t≥0 be the chain resulting from NNI transitions. The following lemma describes the transition
probability matrices for the two chains.

Lemma 1. Let P1 and P2 be the transition probability matrices for the SPR and NNI chains, respectively. Then

(i) For each x, y ∈ Tn, such that P1(x, y) > 0, P1(x, y) ≥
1

(2n−2)2
.

(ii) For each x, y ∈ Tn such that P2(x, y) > 0, P2(x, y) =
1
2 if x = y and P2(x, y) =

1
4(n−2) , otherwise.

Part (i) of this lemma follows from the fact that there are 2n−2 choices for the edge that is cut and, given the edge that is
cut, there are 2n−2ways to re-attach the two resulting subtrees. Some of thesemay give the same transition between trees.
The proof of part (ii) of this lemma is straightforward and is thus omitted from this manuscript. Note that both the NNI and
the SPR transitions are reversible and symmetric and that the resulting Markov chains are aperiodic and irreducible (Karlin
and Taylor, 1975), thus ergodic. In both cases, the unique stationary distribution is the uniform distribution, π(x) = 1/cn,
for each x ∈ Tn.

Often, it is of interest to study the rate at which an ergodic Markov chain converges to its stationary distribution. This is
typically done by obtaining upper and lower bounds on themixing time of the Markov chain. The mixing time of the process
{Xm}m≥0 is defined as τmix(ϵ) := min


m : maxx∈Tn ∥Pm(x, ·)− π(·)∥TV < ϵ


, where ∥µ(·) − ν(·)∥TV denotes the total
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