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a b s t r a c t

Let F be a proper distribution on D = [0,∞) or (−∞,∞) and N be a non-negative
integer-valued random variable with masses pn = P(N = n), n ≥ 0. Denote G =∑
∞

n=0 pnF
∗n. Themain result of this paper is that under some suitable conditions, G belongs

to the convolution equivalent distribution class if and only if F belongs to the convolution
equivalent distribution class. As applications, some known results on random sums have
been extended and improved, which give a positive answer under certain conditions
to Problem 1 of Watanabe (2008). Similarly, some corresponding results for the local
distributions and densities have been obtained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the closure under convolutions and convolution roots of some distribution classes has a wide range
of important applications in queueing theory, risk theory, branching process theory, infinite divisibility theory and so on.
Comparedwith the development of the closure under convolutions, there have been long and difficult studies undertaken on
the closure under convolution roots. A main problem that has not been completely solved is the closure under convolution
roots under the condition (1.2) below. This paper aims to discuss this problem. In order to better illuminate our motivation
and results, we first introduce some notions and notation, which will be valid in the rest of this paper.
Unless otherwise stated, in this paper a limit is taken as x→∞. Let a(x) and b(x) be non-negative functions on D, where

D = (−∞,∞) or [0,∞). Define a ⊗ a(x) = a⊗2(x) =
∫
D a(x − y)a(y)dy. We write a(x) ∼ b(x), if lim a(x)/b(x) = 1;

a(x) = O(b(x)), if lim sup a(x)/b(x) < ∞; a(x) ≈ b(x), if a(x) = O(b(x)) and b(x) = O(a(x)); a(x) = o(b(x)), if
lim a(x)/b(x) = 0. We say that a ∈ Ld(γ ) for some γ ≥ 0, if a(x) > 0 for sufficiently large x and a(x− t) ∼ eγ ta(x) for any
t ∈ (−∞,∞), and say that a ∈ Sd(γ ) for some γ ≥ 0, if a ∈ Ld(γ ),

∫
D e

γ ya(y)dy <∞ and a⊗2(x) ∼ 2a(x)
∫
D e

γ ya(y)dy.
Let F be a proper distribution on D, i.e. F(∞) = 1. Denote the tail of distribution F by F = 1− F . For two distributions F1

and F2, denote the convolution of F1 and F2 by F1 ∗ F2, and denote the n-fold convolution of F by F∗n, n = 0, 1, 2, . . . , where
F∗1 = F and F∗0 is the distribution degenerate at zero. We say that F ∈ L(γ ) for some γ ≥ 0, if F ∈ Ld(γ ), and say that
F ∈ S(γ ) for some γ ≥ 0, ifmF (γ ) =

∫
D e

γ yF(dy) <∞, F ∈ L(γ ) and F∗2(x) ∼ 2mF (γ )F(x). The class S(γ ), γ ≥ 0 is the
so-called convolution equivalent distribution class. Especially, we call S(0) and L(0) the subexponential distribution class
and the long-tailed distribution class, denoted by S andL, respectively. These distribution classes were first introduced by
Chistyakov (1964) for γ = 0, and by Chover et al. (1973a,b) for γ > 0. Bertoin and Doney (1996) pointed out that in the
definition ofL(γ ), when γ > 0 and F is a lattice distribution, x and y should be taken to be an integer multiple of the span,
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which we will assume to be the case in the following. Klüppelberg (1988) introduced an important subclass of S, denoted
by S∗. Say that F ∈ S∗, if F ∈ Sd(0). In addition, Corollary 2.2 of Klüppelberg (1989) proved that for γ > 0, F ∈ S(γ ) if and
only if F ∈ Sd(γ ).
Now we turn to the closure under convolution roots. Let N be a non-negative integer-valued random variable (r.v.) with

masses pn = P(N = n), n ≥ 0. In this paper, we always assume that there exists some integer n ≥ 1 such that pn > 0.
Denote G =

∑
∞

n=0 pnF
∗n. For detailed studies to G, see Section 2.5 of Embrechts et al. (1997) and references therein. The

problem about the closure of S(γ ), γ ≥ 0 under convolution roots is that, under which conditions we can get the following
assertion

G ∈ S(γ )⇒ F ∈ S(γ ). (1.1)

We first briefly review the history of the research on the closure of S(γ ), γ ≥ 0 under convolution roots. If N ≡ n ≥ 2
and F ∈ L(γ ) for some γ ≥ 0, Theorem 2.10 of Embrechts and Goldie (1982) proved (1.1) for the case that D = [0,∞), and
Theorem 5.1 of Pakes (2007) proved (1.1) for the case that D = (−∞,∞). If N ≡ n ≥ 2 and γ = 0, Theorem 2 of Embrechts
et al. (1979) proved (1.1) for the case that D = [0,∞), and Proposition 2.7(ii) of Watanabe (2008) proved (1.1) for the case
that D = (−∞,∞). If N is a Poisson r.v., Theorem 3 of Embrechts et al. (1979) proved (1.1) for the case that γ = 0 and
D = [0,∞). For the case that γ > 0 and D = [0,∞), Theorem 4.2 of Embrechts and Goldie (1982) obtained (1.1) under a
technical condition. Theorem 3.1 of Pakes (2004) proved (1.1) for the case that γ = 0 and D = (−∞,∞). Theorem 1.1 of
Watanabe (2008) proved (1.1) in the case that γ > 0 and D = (−∞,∞). For a more general r.v. N , Theorem 2.13 of Cline
(1987) proved (1.1) for the case that F ∈ L(γ ) for some γ ≥ 0 and D = [0,∞). Theorem 5.1 of Pakes (2004) extended
Cline’s result to the case that D = (−∞,∞). The main condition used by the last two mentioned results is that

∞∑
n=0

pn((mF (γ )+ ε) ∨ 1)n <∞ for some ε > 0. (1.2)

Obviously, if mF (γ ) < 1, (1.2) is naturally satisfied by each r.v. N . If γ = 0, (1.2) holds for every light-tailed r.v. N ,
i.e. EesN < ∞ for some s > 0. However, as stated in Remark 4.2 of Shimura and Watanabe (2005), the last two results
are based on Lemma 2.1(iv) of Cline (1987), which is incorrect. Thus they should be reconsidered.
Recently, (1.1) has been shown by some papers under some stronger conditions without using Lemma 2.1(iv) of Cline

(1987). For D = (−∞,∞) and F ∈ L(γ ), both Pakes (2007) and Wang et al. (2007) proved (1.1) under the condition
that G(x) = O(F(x)). Further, for D = [0,∞) and F ∈ L(γ ), Lemma 3.4 of Pakes (2007) proved (1.1) under the following
condition that

∞∑
n=1

pn(q−1(mG(γ )+ ε))n <∞ for some ε > 0, (1.3)

where q =
∑
∞

n=1 pn. ForD = (−∞,∞) and F ∈ L(γ ), (1.1) was obtained respectively by Theorem 1.2 ofWang et al. (2007)
under the condition that

lim sup
n→∞

pn+1/pn < (mF (γ ))−1 (1.4)

and by Proposition 1.7 of Watanabe (2008) under the condition that
∞∑
n=0

pn((r−1mG(γ )+ ε) ∨ 1)n <∞ for some ε > 0, (1.5)

where r =
∑
∞

n=1 pn(F [0,∞))
n−1.

However, the above conditions (1.3)–(1.5) are stronger than (1.2). Thus whether Theorem 5.1 of Pakes (2004) is right or
wrong is unknown. In this paper, we will show that Theorem 5.1 of Pakes (2004) still holds, which gives a positive answer
under the conditions (1.2) and F ∈ L(γ ) to Problem 1 inWatanabe (2008, p. 371). Thus, Theorem 1.2 of Wang et al. (2007),
Lemma 3.4 of Pakes (2007) and Proposition 1.7 of Watanabe (2008) have been improved. Using this result, Theorem 4.1 of
Watanabe (2008) still holds without the conditions (4.3) and (4.4) of that paper. Now we give the main result of this paper.

Theorem 1.1. Let F be a distribution on D = (−∞,∞). When F is light-tailed, assume that F ∈ L(γ ) for some γ > 0 and
mF (γ ) <∞. Also let the masses pn, n ≥ 0 of the r.v. N satisfy (1.2). Then (1.1) holds.

From Theorem 1.1, we can immediately get the following corollary.

Corollary 1.1. Let F be a distribution on D. Suppose that F ∈ L(γ ) for some γ ≥ 0 and (1.2) holds, then the following assertions
are equivalent:

(a) F ∈ S(γ );
(b) G(x) ∼

∑
∞

n=1 npn(mF (γ ))
n−1F(x);

(c) G ∈ S(γ ).
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