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a b s t r a c t

We consider the Barndorff-Nielsen and Cox (1994, p. 319) method of modifying an
estimative prediction interval to obtain an improved prediction interval with better
conditional coverage properties. The parameter estimator, on which this improved
interval is based, is assumed to have the same asymptotic distribution as the conditional
maximum likelihood estimator. This improved interval depends strongly on the asymptotic
conditional bias of this estimator, which can be very sensitive to small changes in this
estimator. We show, however, that the asymptotic efficiency of this improved prediction
interval does not depend on this bias.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that {Yt} is a discrete-time stochastic process with probability distribution determined by the parameter vector
θ , where theYt are continuous randomvariables. Also suppose that {Y (t)} is aMarkovprocess,whereY (t) =

(
Yt−p+1, . . . , Yt

)
.

For example, {Yt} may be an AR(p) process or an ARCH(p) process. The available data are Y1, . . . , Yn. Suppose that we are
concerned with k-step-ahead prediction where k is a specified positive integer. We use lower case to denote the observed
value of a random vector. For example, y(n) denotes the observed value of the random vector Y (n).
Firstly, suppose that our aim is to find an upper prediction limit z(Y1, . . . , Yn), for Yn+k, such that it has coverage

probability conditional on Y (n) = y(n) equal to 1− α i.e. such that

Pθ
(
Yn+k ≤ z(Y1, . . . , Yn) | Y (n) = y(n)

)
= 1− α

for all θ and y(n). The desirability of a prediction limit or interval having coverage probability 1−α conditional on Y (n) = y(n)
has beennoted by a number of authors. In the context of anAR(p) process, this has beennoted by Phillips (1979), Stine (1987),
Thombs and Schucany (1990), Kabaila (1993), McCullough (1994), He (2000), Kabaila and He (2004) and Vidoni (2004). In
the context of an ARCH(p) process, this has been noted by Christoffersen (1998), Kabaila (1999), Vidoni (2004) and Kabaila
and Syuhada (2008).
Define zα(θ, y(n)) by the requirement that Pθ

(
Yn+k ≤ zα(θ, y(n)) | Y (n) = y(n)

)
= 1− α for all θ and y(n). The estimative

1 − α prediction limit is defined to be zα(Θ̂, Y (n)), where Θ̂ is an estimator of θ with the same asymptotic distribution
as the conditional maximum likelihood estimator of θ . This prediction limit may not have adequate coverage probability
properties, unless n is very large. In Section 2, we recap the argument (due to Cox, 1975, p. 50) showing that the coverage
probability of zα(Θ̂, Y (n)) conditional on Y (n) = y(n) that is 1− α + O(n−1).
Methods for obtaining prediction limits with better asymptotic coverage properties, conditional on Y (n) = y(n), than the

estimative prediction limit have been described by Cox (1975), Barndorff-Nielsen and Cox (1994, p. 319), Corcuera (2001,
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section 4), Vidoni (2004, 2009) and Kabaila and Syuhada (2008). For convenience, we refer to Barndorff-Nielsen and Cox
(1994, p. 319) as BNC94. The key advantages of the BNC94 method are its simplicity, ease of explanation and accessibility
to a relatively wide audience. In Section 2, we recap the argument that shows that the BNC94-improved 1 − α prediction
limit has coverage probability conditional on Y (n) = y(n) that is 1− α + O(n−3/2).
The BNC94 method is applicable not only for Θ̂ the conditional maximum likelihood estimator or θ , but also for any

estimator Θ̂ with the same asymptotic distribution as this estimator. There are many possible choices for Θ̂ . For example,
for a stationary Gaussian AR(1) model, commonly-used estimators of the autoregressive parameter include least-squares,
Yule–Walker and Burg estimators. It is natural to ask the following question. What difference does it make to the BNC94-
improved prediction limit which estimator Θ̂ is used? The BNC94-improved 1 − α prediction limit is obtained from the
estimative 1− α prediction limit using a correction that includes the asymptotic bias of Θ̂ conditional on Y (n) = y(n). This
asymptotic conditional bias can be very sensitive to small changes in the estimator Θ̂ (Kabaila and Syuhada, 2007, Section
4 and Syuhada, 2008). For example, the Yule–Walker and least-squares estimators of the autoregressive parameter of a
stationary Gaussian AR(1) model have quite different asymptotic conditional biases. So, the form of the BNC94-improved
1 − α prediction limit will typically depend very strongly on the choice of Θ̂ . What difference does this make to the
asymptotic efficiency of the BNC94-improved prediction limit? In Section 2, we show that the asymptotic efficiency of this
improved prediction limit is not influenced by which estimator Θ̂ is used.
We extend these results to prediction intervals as follows. In Section 3, we show that the estimative 1 − α prediction

interval has coverage probability conditional on Y (n) = y(n) is 1−α+O(n−1). In this section, we also present a modification
of an estimative 1− α prediction interval, analogous to the BNC94 modification of an estimative prediction limit, to obtain
an improved 1−α prediction interval with better coverage properties.We show that this improved 1−α prediction interval
has coverage probability conditional on Y (n) = y(n) that is 1−α+O(n−3/2). Thismodification involves the use of a correction
that includes the asymptotic bias of Θ̂ conditional on Y (n) = y(n). Does it make any difference to the asymptotic efficiency of
this improved prediction interval which estimator Θ̂ of θ is used? In Section 3, we show that it does not make any difference
which estimator is used. In Section 5, we present an illustration of this result.
The fact that the asymptotic efficiencies of these prediction limits and intervals do not depend on which estimator Θ̂ of

θ is used, provided that it has the same asymptotic distribution as the conditional maximum likelihood estimator, has the
following consequence. We can use that estimator Θ̂ whose asymptotic conditional bias is easiest to find. Usually, this will
be conditional maximum likelihood estimator whose asymptotic conditional bias can be found using the formula of Vidoni
(2004, p. 144).
When the extensive algebraic manipulations required to find the BNC94-improved prediction limit or interval are too

messy, we can use the Kabaila and Syuhada (2008) simulation-based methodology to find approximations to this improved
prediction limit or interval. The implications of the asymptotic efficiency results described in Sections 2 and 3 for these
approximations are described in Section 4.

2. Asymptotic efficiency result for improved prediction limits

In this section we recap the argument, due to Cox (1975), that the conditional coverage probability of the estimative
1− α upper prediction limit is 1− α + O(n−1). We then recap the argument, due to BNC94, that the conditional coverage
probability of their improved 1 − α upper prediction limit is 1 − α + O(n−3/2). This prediction limit includes a correction
term that depends strongly on the asymptotic conditional bias of Θ̂ . We show, however, that the asymptotic efficiency of
this prediction limit (which we measure to O(n−1)) does not depend on this bias (which we also measure to O(n−1)).
Let F( · ; θ, y(n)) denote the cumulative distribution function of Yn+k, conditional on Y (n) = y(n). Also, let f ( · ; θ, y(n))

denote the probability density function corresponding to this cumulative distribution function. Assume, as do Cox (1975),
BNC94 and Vidoni (2004), that

Eθ
(
Θ̂ − θ | Y (n) = y(n)

)
= b(θ, y(n))n−1 + · · · (1)

Eθ
(
(Θ̂ − θ)(Θ̂ − θ)T | Y (n) = y(n)

)
= i−1(θ)+ · · · (2)

where i(θ) denotes the expected information matrix. We assume that every element of i(θ) is O(n−1). Henceforth, we use
the Einstein summation notation that repeated indices are implicitly summed over.
Define Hα(θ |y(n)) = Pθ

(
Yn+k ≤ zα(Θ̂, y(n)) | Y (n) = y(n)

)
, which is the conditional coverage probability of the

1 − α estimative prediction limit. Using the fact that the distribution of Yn+k given (Y1, . . . , Yn) = (y1, . . . , yn) depends
only on y(n), it may be shown that Hα(θ |y(n)) = Eθ

(
F(zα(Θ̂, y(n)); θ, y(n)) | Y (n) = y(n)

)
. Now define Gα(Θ̂; θ |y(n)) =

F(zα(Θ̂, y(n)); θ, y(n)). Thus Hα(θ |y(n)) = Eθ
(
Gα(Θ̂; θ |y(n)) | Y (n) = y(n)

)
. We now use the stochastic expansion

Gα(Θ̂; θ |y(n)) = Gα(θ; θ |y(n))+
∂Gα(θ̂; θ |y(n))

∂θ̂i

∣∣∣∣∣
θ̂=θ

(Θ̂i − θi)+
1
2
∂2Gα(θ̂; θ |y(n))

∂θ̂r∂θ̂s

∣∣∣∣∣
θ̂=θ

(Θ̂r − θr)(Θ̂s − θs)+ · · · . (3)
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