Uniqueness, recurrence and decay properties of collision branching processes with immigration

Juan Wang, Junping Li*
School of Mathematics and Statistics, Central South University, Changsha, 410075, China

ARTICLE INFO

Article history:

Received 30 June 2012
Received in revised form 19 March 2013
Accepted 20 March 2013
Available online 28 March 2013

MSC:

primary 60J27
secondary 60J35

Keywords:

Regularity
Recurrence
Decay parameter
Invariant measures
Invariant vectors
Equilibrium distributions

Abstract

We consider a kind of Collision Branching Processes with Immigration (CBIP). Some important properties of the generating functions for the CBI q-matrix were first investigated in detail. Then for any given CBI q-matrix, the existence and uniqueness of CBIP is proved, and sufficient and easily checked conditions for the CBIP to be recurrent are given. Moreover, the exact value of the decay parameter λ_{Z} is obtained and expressed explicitly for the communicating class \mathbb{Z}_{+}in the case that the immigration is independent of states. It is shown that this λ_{Z} can be directly obtained from the generating functions of the corresponding q-matrix. Finally, the invariant vectors and invariant measures are considered.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We mainly consider the recurrence property and decay property of collision branching processes with immigration, such as the decay parameter, invariant measure/vector and equilibrium distribution. The evolution of the particles in the system can be described as follows.
(i) Only collisions between two particles will give "offspring". Collisions occur at random and, whenever two particles collide, they are removed and replaced by j "offsprings" with probability $p_{j}(j \geq 0)$, independently of other collisions.
(ii) Immigration will occur at any state.
(iii) Immigrants from outside will follow the same reproductive rules as above.

We now begin to specify the model as a continuous time Markov chain with the state space $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$. In order that the branching property holds for the ordinary Markov branching process, it is necessary that its transition function obeys the Kolmogorov forward equations. Guided by this fact, we formally define the collision branching process with immigration as follows.

[^0]Definition 1.1. A q-matrix $Q=\left(q_{i j} ; i, j \in \mathbb{Z}_{+}\right)$is called a collision branching q-matrix with immigration (henceforth referred to as a CBI q-matrix) if it takes the following form.

$$
q_{i j}= \begin{cases}h_{j} & \text { if } i=0, j \geq 0 \tag{1.1}\\ a_{j-1} & \text { if } i=1, j \geq 1 \\ \binom{i}{2} b_{j-i+2} & \text { if } i \geq 2, j=i-1, i-2 \\ \binom{i}{2} b_{j-i+2}+a_{j-i} & \text { if } i \geq 2, j \geq i \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\left.\left\{\begin{array}{ll}
h_{j} \geq 0 & (j>0), \tag{1.2}\\
a_{j} \geq 0 & 0 \leq-h_{0}=\sum_{j=1}^{\infty} h_{j}<\infty \\
b_{j} \geq 0 & (j>0),
\end{array} \quad \sum_{j=1}^{\infty} a_{j}>0, \quad 0<-a_{0}=\sum_{j \neq 0} a_{j}<\infty\right), \quad \sum_{j=3}^{\infty} b_{j}>0, \quad 0<-b_{2}=\sum_{j \neq 2} b_{j}<+\infty\right) ~ l l
$$

together with $b_{0}>0$ and $b_{1}>0$.
The conditions $b_{0}>0$ and $\sum_{j=3}^{\infty} b_{j}>0$ are essential, while condition $b_{1}>0$ is imposed for convenience; all our conclusions hold true with some minor and obvious adjustments if this latter condition is removed.

Definition 1.2. A collision branching process with immigration (henceforth referred to simply as a CBIP) is a continuoustime Markov chain, taking values in \mathbb{Z}_{+}, whose transition function $P(t)=\left(p_{i j}(t) ; i, j \in \mathbb{Z}_{+}\right)$satisfies the forward equation

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{1.3}
\end{equation*}
$$

where Q is a CBI q-matrix defined in (1.1)-(1.2).
In order to avoid discussing some trivial cases, we shall assume that \mathbb{Z}_{+}is an irreducible class for our q-matrix Q as well as for the corresponding Feller minimal Q-function throughout this paper excepting where we consider the absorbing case. It is easy to see that \mathbb{Z}_{+}is irreducible if and only if $h_{0} \neq 0, \sum_{k=0}^{\infty}\left(a_{2 k+1}+b_{2 k+1}\right)>0$. Therefore, by Theorem 5.1.9 of Anderson (1991), we know that there exists a nonnegative number, $\lambda_{z} \geq 0$ say, called the decay parameter of the corresponding process, such that for all $i, j \in \mathbb{Z}_{+}$,

$$
\frac{1}{t} \log p_{i j}(t) \rightarrow-\lambda_{Z} \quad \text { as } t \rightarrow+\infty
$$

On the other hand, let

$$
\begin{equation*}
\mu_{i j}=\inf \left\{\lambda \geq 0: \int_{0}^{\infty} e^{\lambda t} p_{i j}(t) d t=\infty\right\}=\sup \left\{\lambda \geq 0: \int_{0}^{\infty} e^{\lambda t} p_{i j}(t) d t<\infty\right\} . \tag{1.4}
\end{equation*}
$$

It is known that irreducibility implies that $\mu_{i j}$ is independent of $i, j \in \mathbb{Z}_{+}$. Denote the common value of $\mu_{i j}$ by μ. It is wellknown that

$$
\lambda_{z}=\mu
$$

An elementary but detailed discussion of this theory can be seen in Anderson (1991). For convenience, we briefly repeat these definitions, tailored for our special models, as follows.

Definition 1.3. Let $Q=\left(q_{i j} ; i, j \in \mathbb{Z}_{+}\right)$be a CBI q-matrix such that \mathbb{Z}_{+}be an irreducible class. Assume that $\mu \geq 0$. A set $\left(m_{i} ; i \in \mathbb{Z}_{+}\right)$of strictly positive numbers is called a μ-subinvariant measure for Q on \mathbb{Z}_{+}if

$$
\begin{equation*}
\sum_{i \in \mathbb{Z}_{+}} m_{i} q_{i j} \leq-\mu m_{j}, \quad j \in \mathbb{Z}_{+} \tag{1.5}
\end{equation*}
$$

If equality holds in (1.5), then $\left(m_{i} ; i \in \mathbb{Z}_{+}\right)$is called a μ-invariant measure for Q on \mathbb{Z}_{+}.
Definition 1.4. Let $P(t)=\left(p_{i j}(t) ; i, j \in \mathbb{Z}_{+}\right)$be a CBIP such that \mathbb{Z}_{+}be an irreducible class. Assume that $\mu \geq 0$. A set ($m_{i} ; i \in \mathbb{Z}_{+}$) of strictly positive numbers is called a μ-subinvariant measure for $p_{i j}(t)$ on \mathbb{Z}_{+}if

$$
\begin{equation*}
\sum_{i \in \mathbb{Z}_{+}} m_{i} p_{i j}(t) \leq e^{-\mu t} m_{j}, \quad j \in \mathbb{Z}_{+} . \tag{1.6}
\end{equation*}
$$

If equality holds in (1.6), then ($m_{i} ; i \in \mathbb{Z}_{+}$) is called a μ-invariant measure for $p_{i j}(t)$ on \mathbb{Z}_{+}.

https://daneshyari.com/en/article/1152961

Download Persian Version:

https://daneshyari.com/article/1152961

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 073182656561.

 E-mail addresses: wangjuanrose@126.com (J. Wang), jpli@mail.csu.edu.cn (J. Li).

