
Statistics and Probability Letters 83 (2013) 1677–1682

Contents lists available at SciVerse ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Jackknife estimation with a unit root
Marcus J. Chambers a,1, Maria Kyriacou b,∗

a Department of Economics, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, England, United Kingdom
b Economics Division, School of Social Sciences, University of Southampton, Highfield, SO17 1BJ, United Kingdom

a r t i c l e i n f o

Article history:
Received 23 August 2012
Received in revised form 1 February 2013
Accepted 20 March 2013
Available online 30 March 2013

Keywords:
Jackknife
Bias reduction
Unit root

a b s t r a c t

We study jackknife estimators in a first-order autoregression with a unit root. Non-
overlapping sub-sample estimators have different limit distributions, so the jackknife does
not fully eliminate first-order bias. We therefore derive explicit limit distributions of the
numerator anddenominator to calculate the expectations that determine optimal jackknife
weights. Simulations show that the resulting jackknife estimator produces substantial
reductions in bias and RMSE.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A longstanding bias reduction method whose properties have been less widely explored in autoregressive models is the
jackknife (Quenouille, 1956; Tukey, 1958). In recent work, Chambers (2013) investigated jackknife methods in a stationary
autoregression and Phillips and Yu (2005) used the jackknife to estimate the parameters of a continuous time model and
associated bond option prices. In all the above contributions the properties of the jackknife as a bias reduction device are
confirmed by significant bias reductions in simulation experiments. As observed by Quenouille (1956) in his original paper,
autoregressive parameter estimators typically suffer from negative bias. The nature of the bias in stationary autoregression
has been extensively studied and its properties are well understood. For example, early contributions to this topic can be
found inMarriott and Pope (1954), Kendall (1954) and Shenton and Johnson (1965). This bias is large in the unit root case and
it is, therefore, particularly interesting to ascertain the extent of bias reduction that can be achieved by jackknife methods
in this setting.

The focus of this paper is jackknife estimation in unit root regression. We consider the jackknife proposed by Phillips and
Yu (2005) based on non-overlapping sub-samples which was found to perform well by Chambers (2013). In the presence
of a unit root, we show that the jackknife in its usual formulation fails to fully eliminate the first-order bias. The source of
this failure lies in the different limit distributions of the sub-samples. These distributionsmotivate a set of optimal jackknife
weights that ensure the first-order bias is fully removed. Simulations reveal that the ‘optimal’ jackknife estimator proposed
here produces further bias and root mean squared error (RMSE) reductions.

The following notation is used throughout. The symbol d
=denotes equality in distribution,

d
−→ convergence in distribution,

p
−→ convergence in probability, ⇒ weak convergence of the relevant probability measures, and W (r) a Wiener process on
C[0, 1], the space of continuous real-valued functions on the unit interval. Functionals of W (r), such as

 1
0 W (r)2dr are

denoted
 1
0 W 2.
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2. Jackknife estimation with a unit root

Let the data be generated by the random walk

yt = yt−1 + ϵt , ϵt ∼ iid N(0, σ 2), t = 1, . . . , n, (1)

where y0 can be any observed Op(1) random variable. Ordinary least squares (OLS) regression gives

yt = β̂yt−1 + ϵ̂t , t = 1, . . . , n, (2)

where ϵ̂t is the regression residual and the coefficient satisfies

n(β̂ − 1) =

n−1
n

t=1
yt−1ϵt

n−2
n

t=1
y2t−1

⇒

 1
0 WdW 1
0 W 2

as n → ∞. (3)

The limit distribution in (3) is skewed and the estimator suffers from significant negative finite sample bias. Assuming
y0 = 0, Phillips (1987, Theorem 7.1) demonstrated the validity of an asymptotic expansion given by

n(β̂ − 1) d
=

 1
0 WdW 1
0 W 2

−
η

√
2n
 1
0 W 2

+ Op(n−1), (4)

where η ∼ N(0, 1) and is distributed independently of W . Taking expectations in (4) and noting that the expected value
of the leading term is −1.781 (see, for example, Table 7.1 of Tanaka, 1996), the bias satisfies

E(β̂ − 1) = −
1.781

n
+ O(n−2), (5)

an expansion that motivates the use of the jackknife as a method of bias reduction.
The jackknife offers a simple method of reducing bias by eliminating the leading bias term. The jackknife estimator

combines the full-sample estimator, β̂ , with a set of m sub-sample estimators, β̂j (j = 1, . . . ,m). The weights assigned to
these components depend on the type of sub-sampling employed. In stationary autoregression, Chambers (2013) compares
alternative methods of sub-sampling and finds non-overlapping ones to perform best in reducing bias. The jackknife
estimator is

β̂J = κmβ̂ + δm
1
m

m
j=1

β̂j, (6)

where the non-overlapping weights are given by κm = m/(m − 1) and δm = −1/(m − 1) and the sub-sample length is ℓ,
with n = m × ℓ. These weights are determined on the assumption that each sub-sample estimator also satisfies (5):

E(β̂j − 1) = −
1.781

ℓ
+ O(ℓ−2), j = 1, . . . ,m. (7)

Under such circumstances the jackknife estimator is capable of completely eliminating theO(n−1) bias term in the estimator
as compared to β̂ .

2.1. Sub-sample limit distribution

The sub-sample estimators, however, do not share the same limit distribution as the full-sample estimator, which
means that the bias expansions for the sub-sample estimators are incorrect. The reason is that the sub-sample initial
value is the accumulated sum of all previous innovations and the initialization is not eliminated in the asymptotics. Let
τj = {(j − 1)ℓ + 1, . . . , jℓ} denote the set of integers in sub-sample j (j = 1, . . . ,m). Under (1), the observations in
sub-sample j satisfy

yt = yt−1 + ϵt = y(j−1)ℓ +

t
i=(j−1)ℓ+1

ϵi, t ∈ τj, (8)

and so the initial value, y(j−1)ℓ, is Op
√

(j − 1)ℓ

rather than Op(1) or a constant.

The sub-sample estimator can be written

β̂j − 1 =


t∈τj

yt−1ϵt
t∈τj

y2t−1
, j = 1, . . . ,m. (9)
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