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a b s t r a c t

The main purpose of this paper is to derive unbiased Monte Carlo estimators of various
sensitivity indices for an averaged asset price dynamics governed by the gamma Lévy
process. The key idea is to apply a scaling property of the gammaprocesswith respect to the
Esscher density transform parameter. Our framework covers not only the continuous Asian
option, but also European, discrete Asian, average strike Asian, weighted average, spread
options, and geometric average Asian options. Numerical results are provided to illustrate
the effectiveness of our formulas in Monte Carlo simulations, relative to finite difference
approximation.
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1. Introduction

In mathematical finance, it has been widely known that the logarithmic derivatives of the density function of stochastic
differential equations correspond essentially to the so-called Greeks, that is, sensitivity indiceswith respect to variousmodel
parameters of asset price dynamics. The pioneer work in this direction is of Fournié et al. (1999), whose approach is based
upon the integration-by-parts formula developed in the Malliavin calculus on the Wiener space. They provide a systematic
approach to the derivation of various Greeks formulas for a relatively general diffusion asset price dynamics. Since then,
there has long been a natural and nontrivial question as to whether a similar Malliavin calculus approach is applicable in
the case of jump processes.
The investigation of the Malliavin calculus for jump processes is initiated in Bismut (1983) based upon the Girsanov

density transform with a view towards the study of the existence and the smoothness of the density. Various types of
Malliavin calculus and logarithmic derivatives have been studied on the Poisson space or on the Wiener–Poisson space.
In particular, the existence of weights for the logarithmic derivatives dates back to the work of Bichteler et al. (1987), while
the uniqueness and the closed forms of the weight have not been established in the general framework.
For practical considerations, however, it is most important to have closed, but not necessarily unique, weights on hand,

in order to design an efficientMonte Carlo evaluation. In this direction, Greeks formulas are obtained in Davis and Johansson
(2006) andCass and Friz (2007) for jumpdiffusionprocesses. Their approach consists of conditioning on the jumpcomponent
and thenperforming theMalliavin calculus techniques on thediffusion component. In otherwords, theirmodels are required
to be a superposition of independent jump and diffusion components, where the diffusion one must not be degenerate. On
the other hand, El-Khatib and Privault (2004) applied the Malliavin calculus focused on the Poisson arrival times due to
Carlen and Pardoux (1990), while Bally et al. (2007) took a unified approach considering the derivatives with respect to
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both the Poisson arrival times and the amplitude of the jumps. Kawai and Kohatsu-Higa (in press) derives formulas for Lévy
process models of time-changed Brownian motion type, by employing the Gaussian Malliavin calculus conditionally on the
time-changing process. Takeuchi (under revision) studied the same problem for the stochastic differential equations with
jumps via a martingale approach. Kawai and Takeuchi (under revision) studied the computation of the Greeks of European
payoffs for an asset price dynamics defined with gamma processes and with Brownian motions, possibly time-changed by
one of the gamma processes. In Kawai and Takeuchi (under revision), various well known financial models, such as the
Black–Scholes model and the variance gammamodel of Madan et al. (1998), are within its framework. The key idea there is
to apply a scaling property of the gamma distributionwith respect to the Esscher transform.
In this paper, we take an approach again based on the scaling property, not of the gamma distribution as in Kawai and

Takeuchi (under revision), but of the gamma Lévy process. This, rather simple, extension widens the applicability to the
averaged asset price dynamics defined with the gamma process. A typical example of interest is the (continuous) Asian
option, which looks at the time average of underlying asset price dynamics, unlike only the terminal value in the European
options. Meanwhile, many others, such as European, discrete Asian, average strike Asian, weighted average and spread
options, can easily be accommodated in our framework. In addition, Asian options of geometric average type are also within
our scope. This work can also be thought of as a considerable generalization of Kawai and Takeuchi (under revision), in the
sense that some of the European Greeks formulas there can be recovered from our results. Finally, our approach taken in
this paper can also be applied in various stochastic systems involving gamma processes.
The rest of the paper is organized as follows. Section 2 recalls generalities on the gamma process and introduces our

asset price dynamics model with assumptions to be imposed on its characterizing parameters. In Section 3, we derive
formulas of the Greeks for discontinuous payoff function of averaged asset price dynamics defined with the gamma process.
The derivation of our formulas entails rather lengthy proofs of somewhat routine nature. To avoid overloading the paper,
we omit nonessential details in some instances. We close this study with some numerical results to illustrate remarkable
improvements in Monte Carlo simulations in terms of estimator variance relative to the finite difference estimation.

2. Preliminaries

Let us begin with general notations which will be used throughout the text. For each positive integer k, ∂k indicates the
partial derivative with respect to k-th argument. We fix (Ω,F , P) as our underlying the probability space. We denote by EP
the expectation under the probability measure P. We denote by δx(dy) the Dirac delta measure on R with concentration at
x ∈ R, while Bε := (−ε,+ε) is the open ball around the origin with radius ε > 0. Let {Yt : t ≥ 0} be a one-sided pure-jump
Lévy process in [0,+∞)with the Lévy measure

ν(dz) = a
e−bz

z
dz, z ∈ (0,+∞),

where a > 0 and b > 0. The stochastic process {Yt : t ≥ 0} is then called a gamma process with parameter (a, b), whose
marginal has the gamma distribution with characteristic function

EP
[
eiyYt

]
= exp

[
t
∫
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]
=
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b
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Moreover, the marginal density function at time t is given in the form

f Pt (y) =
bat

0(at)
yat−1e−by, y ∈ (0,+∞), (1)

where 0(p) is the gamma function of order p > 0.
Throughout the paper, we fix T > 0. Define Λ :=

{
λ ∈ R : EP[eλY1 ] < +∞

}
= (−∞, b). For λ ∈ Λ, define a new

probability measure Qλ by

dQλ

dP

∣∣∣∣
FT

:=
eλYT

EP
[
eλYT

] = exp[λYT − ϕT (λ)],
where ϕT (λ) := aT ln

(
b/(b− λ)

)
and where (Ft)t∈[0,T ] is the natural filtration generated by {Yt : t ∈ [0, T ]}. This measure

change is the simplest form of the Girsanov transformation, often called the Esscher transform in mathematical finance and
actuarial science. The following is the key tool for our discussions.

Lemma 2.1. The laws of the process Y under Qλ and of the process Y (λ) := bY/(b− λ) under P are identical.

Proof. It iswell known that for Lévy processes, the identity of finite dimensional distributions implies the identity of random
processes in law. Fix 0 = t0 ≤ t1 ≤ · · · ≤ tn = T and ζ1, . . . , ζn ∈ R arbitrarily. Due to the independence of the increments
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