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a b s t r a c t

The analysis of longitudinal data or repeated measurements is
an important and growing area of Statistics. In this context, data
come in different formats but typically, they have a hierarchical
or multi-level structure including group and subject components,
and the main purpose of the analysis is usually to estimate
these components from the data. A standard way to perform this
estimation is via mixed models. In this paper, we show that the
estimated group effects from standard smooth mixed models can
deviate systematically from the underlying group mean, leading
to wrong conclusions about the data. We then present two ways
to avoid such systematic deviations and misinterpretations when
fitting flexible mixed models to multi-level data. The first method
is a marginal procedure, and the second method is based on
the conditional distribution of the subject effects derived from
appropriate constraints. Both methods are robust against mis-
specification of the covariance structure in the sense that they
allow one to resolve the lack of centring found in standard smooth
mixed models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal data arise widely in Medicine, Psychology, Social Sciences, etc. In a longitudinal
study, repeated observations are recorded on a number of subjects over time with grouped or
nested structures, causing traditional model assumptions of independence and homogeneity to fail.
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A solution to this problem is found in the use of mixed models, which allow the appropriate
investigation of data with more complex, multi-level and hierarchical structures.

The origin ofmixedmodels can be tracedback to Fisher [13]who introduced randomeffectsmodels
to study the correlations of trait values between relatives. Subsequently, Henderson et al. [17] brought
up the concept of best linear unbiased predictions (BLUE), and, following the work of Harville [15]
and Laird and Ware [18], mixed models attracted considerable attention and became a major area
of Statistics. Detailed exposure and recent developments can be found in [6,26,27,1], among others.
In essence, measurements on each subject are treated as a cluster, and incorporation of multi-level
random effects allows one to make inference using a combination of data from all subjects.

Mixed models can be divided broadly into two groups: (i) the parametric framework in which
appropriate parametric functions are sufficient to provide a good description of the data [21,6], and
(ii) the semiparametric or smooth framework where one needs to allow room for flexibility in order
to capture complex or hidden patterns in the data [2,9,27]. In both cases, the model is made up of two
components: the fixed (group) effects and the random (subject) effects. A key issue that arises from
such a representation is the appropriate identification of these two effects. For example, when the
subject effects are meant to quantify departures from a mean or group effect, one would expect an
ANOVA-type condition to be fulfilled: that is, the estimated or predicted subject effects are broadly
centred at each time point. A violation of this centring requirement can result in estimated group and
subject effects that deviate systematically from the data.

Under mild conditions (as we shall see in Section 2.1), it can be shown that the BLUP of the subject
effects from parametric mixed models fulfil the centring requirement irrespective of the covariance
structure. However, it is not the case for smoothmixedmodels. Indeed, formany datasets, widely used
smooth mixed models for multi-level longitudinal data yield (a) estimated group and subject effects
that deviate severely from the underlying data and (b) standard errors with undesirable properties,
as we shall elaborated in detail in Section 2.2.

These problems surrounding smoothmixedmodelswere considered byHeckman et al. [16].Whilst
the authors advocated the use of a sandwich procedure to improve the estimates of standard errors,
they provided no solution to the systematic deviation problem pertaining to estimates of the group
and subject effects in the first place. Djeundje and Currie [8] raised the same concerns and described a
way to tackle the problem via multiple penalties. However, using penalty arguments is equivalent
to assuming a particular covariance structure, and it possible to construct covariance structures
that deviate from those based on penalty arguments. In other words, a penalty-based covariance
structure can become inappropriate, resulting in amodelwith undesirable properties. In the context of
parametricmixedmodels for instance, Gurka et al. [14] showedhow incorrectly assuming a compound
symmetric covariance structure can inflate type I error for inference about the fixed effects.

In this paper, we present twomethods that can be used to avoid systematic deviationswhen fitting
flexible or smooth mixed models to multi-level data. The first method is a marginal procedure, and
the second method is a constrained mixed model in which the joint prior distribution of the subject
effects is conditional on appropriate constraints. Unlike the covariance driven approach, these two
methods are robust against mis-specified covariance structures in the sense that they allow to ensure
appropriate identification of the group and subject effects (as we shall see in Section 3).

The paper is structured as follows. Section 2 introduces some notations, explores parametricmixed
models, and raises concerns about smooth mixed models. Section 3 presents ways to handle the
problems exposed in Section 2. A discussion and some concluding remarks follow in Section 4.

2. Mixed models and identification

Consider a longitudinal study involving a sample of n subjects in which yij denotes a continuous
random variable observed on subject i at time point tij, j = 1, . . . , ni. The values of this variable may
be driven by several covariates, some being time-dependent and othersmeasured only at the baseline.
In general, let xij designate the vector of covariates values on subject i at time tij. Wewill represent the
response vector on subject i by yi, the corresponding time vector by ti, and the associated covariate
vector or matrix by xi. A well known modelling framework for such data is

yi = µ(ti, xi) + fi(ti, xi) + εi, i = 1, . . . , n, (2.1)
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