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a b s t r a c t

Aprocess in a Euclidean space is called an additive process if it has independent increments.
We recall the classical Lévy–Itô representation for additive processes without fixed jumps,
and describe how fixed jumps were handled in the classical literature. Our main result is
an extended Lévy–Itô formula in which the fixed jumps are expressed in a canonical and
convenient form.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let xt , t ∈ R+ = [0, ∞), be a process inRd with rcll paths (right continuous pathswith left limits). It is called an additive
process if it has independent increments in the sense that for s < t, xt − xs is independent of F x

s , where {F x
t } is the natural

filtration of xt . It is said to have a fixed jump at time t > 0 if P(xt ≠ xt−) > 0. A rcll process without fixed jump is called
stochastically continuous. The classical Lévy–Itô representation expresses a stochastically continuous additive process as a
sum of a non-random drift, a time inhomogeneous Brownian motion and independent jumps counted by a Poisson random
measure. This formula will be recalled more precisely in Section 2.

In general, the fixed jumps of an additive process do not form a convergent part of the process. Lévy (1965) proved that
after subtracting suitable centralizing constants, the sum of fixed jumps converge, but the constants were not identified.
More explicit approaches were taken by Itô (1969) and Loève (1978), but their centralizing constants are non-canonical and
quite complicated, see Section 2 for more details.

Themain purpose of this paper is to show that the centralizing constants of fixed jumpsmaybe taken to be their truncated
means. The result is given in the formof an extended Lévy–Itô representation for additive processes, inwhich the fixed jumps
are expressed in a canonical and convenient fashion, see Section 3. This formof the formula appears to be new. A direct proof,
or a proof based on the centralizing methods in the literature cited above, does not seem to be easy. However, a key step
of the proof is already obtained in Jacod and Shiryaev (2003) for establishing a Fourier transform of additive processes. This
allows us to provide a rather quick proof.

2. The classical Lévy–Itô representation

We first mention some standard notation. For x ∈ Rd, let |x| be its Euclidean norm. For two real numbers a and b, let
a ∧ b = min(a, b). For any function f and measure µ, the integral


fdµ may be written as µ(f ). The Borel σ -field of a

topological space X is denoted B(X).
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A continuous path bt in Rd with b0 = 0 (origin) will be called a drift. Let Bt = (B1
t , . . . , B

d
t ) be a continuous d-dim

Gaussian process of mean 0 and with independent increments. Its distribution is determined completely by its covariance
matrix function Aij(t) = E(Bi

tB
j
t). When Ajk(t) = atδij for some constant a > 0, Bt is a Brownian motion in Rd. In general, Bt

will be called an inhomogeneous Brownian motion in Rd.
A random measure N on R+ × Rd, taking values from nonnegative integers, including ∞, will be called a counting

measure. We will assume all counting measures N also satisfy that E[N([0, t] × ·)] is a σ -finite measure on Rd for any
t > 0, and almost surely,

N({t} × Rd) ≤ 1 for all t > 0, and N({0} × Rd) = N(R+ × {0}) = 0. (1)

A counting measure counts points in Rd at any time t , and (1) means that at each t , there is at most one point, and no point
at time 0 and no point at origin 0. The measure η = E[N(·)] on R+ × Rd is called the intensity measure of N . The measure-
valued function ηt = η([0, t] × ·) is nondecreasing and right continuous in the sense that ηs ≤ ηt for s < t and ηt ↓ ηs as
t ↓ s, and its left limit ηt− at any t > 0 is defined as the nondecreasing limit of ηs as s ↑ t .

A counting measure N with intensity η is called a Poisson measure if η is continuous in time, that is, ηt− = ηt (or
equivalently η({t} × Rd) = 0) for t > 0, and it has independent increments in the sense that the measure-valued process
Nt = N([0, t] × ·) does so. By Theorem 12.10 in Kallenberg (2002), for any disjoint B1, B2, . . . , Bk ∈ B(R+ × Rd),
N(B1),N(B2), . . . ,N(Bk) are independent Poisson random variables of means η(B1), η(B2), . . . , η(Bk). Here, a Poisson
random variable of mean 0 or ∞ is defined to be 0 or ∞. Note that our definition of Poisson measures follows Jacod and
Shiryaev (2003) and is not as general as given in Kallenberg (2002).

We now summarize some simple facts about the integration of a Poisson measure N , which can be easily proved. Let η

be the intensity of N . The compensated form of N is Ñ = N −η. For p > 0, let F p be the space of Borel functions f on Rd such
that ηt(|f |p) < ∞ for any t > 0. For f ∈ F 1

∩ F 2, the integral Ñt(f ) = Nt(f ) − ηt(f ) is well defined and is an L2-martingale
(under the natural filtration of Nt ) with E[Ñt(f )2] = ηt(f 2). For f ∈ F 2,Nt(f ) − ηt(f ) may not be well defined, but Ñt(f ) is
defined as the L2-limit of Ñt(fn) for any sequence fn ∈ F 1

∩ F 2 with ηt((f − fn)2) → 0. Then by Doob’s norm inequality for
martingales, almost surely, Ñt(fn) → Ñt(f ) uniformly in t in any bounded interval.

We now present the modern form of Lévy–Itô representation, see Theorem 15.4 in Kallenberg (2002) or Theorem 19.2
in Sato (1999). If xt is an additive process in Rd with x0 = 0 and without fixed jumps, then there is a triple (b, B,N), unique
almost surely, of a drift bt in Rd, an inhomogeneous Brownian motion Bt in Rd, and an independent Poisson measure N on
R+ × Rd with intensity η satisfying

|x|>1
ηt(dx) < ∞ and


|x|≤1

|x|2ηt(dx) < ∞ (2)

for any t > 0, such that

xt = bt + Bt +


|x|≤1

xÑt(dx) +


|x|>1

xNt(dx). (3)

Conversely, for any triple (b, B,N) with properties stated above, xt given by (3) is an additive process in Rd with x0 = 0 and
without fixed jumps.

Note that the first integral in (3) is the limit of

ε<|x|≤1 xNt(dx)−


ε<|x|≤1 xηt(dx) as ε → 0 and the convergence is uniform

for bounded t almost surely. Because Nt({x ∈ Rd
; |x| > ε}) is a finite Poisson random variable, both


ε<|x|≤1 xNt(dx) and the

second integral in (3) are sums of finitelymany nonzero terms almost surely. Because η is continuous in time,

ε<|x|≤1 xηt(dx)

is continuous in t , it is then easy to see from (3) that the Poisson randommeasureN is the jump countingmeasure of process
xt defined by

N([0, t] × B) = #{u ∈ (0, t]; 1xu ∈ B and 1xu ≠ 0}, (1xu = xu − xu−), (4)

the number of the jumps in B during the time interval [0, t], for t > 0 and B ∈ B(Rd).
Lévy (1965) proved that the fixed jumps, after subtracting suitable constants, form a convergent part of process xt . The

approach in Itô (1969) ismore explicit and is nowdescribed here. The central value γ (x) of a randomvariable x is defined (by
Doob) as the unique real number γ such that E[tan−1(x − γ )] = 0, and its dispersion is defined as δ(x) = − log E[e−|x−y|

],
where y is an independent copy of x. Although they do not share the usual properties of the mean and variance, it holds that
γ (x + r) = γ (x) + r for any real number r and δ(x + y) ≥ δ(x) for any random variable y independent of x. Moreover, if
xn are independent with sn = x1 + · · · + xn, then sn − γ (sn) converges almost surely if and only if δ(sn) is bounded. For an
additive process xt , its fixed jumps are countably many and may be ordered as a sequence. Let sn be the sum of the first n
fixed jumps 1xs for s ≤ t . Because δ(sn) ≤ δ(xt), the centralized sum sn − γ (sn) converges to a process wt as n → ∞. Then
xt − wt − γ (xt) has no fixed jumps to which the Lévy–Itô formula may be applied.
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