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a b s t r a c t

Intuitively one might expect that the quality of statistical estimates cannot worsen if they
are based on more data. We show in a least-squares linear regression setting that this
intuition is wrong. Adding data may worsen the quality of parameter estimates, and in
fact may even cause a design sequence to lose strong consistency.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Consider a linear model of the form

yt = xTt θ
(0)

+ ϵt , (t ∈ N), (1)

where yt ∈ R is a response variable (sometimes called observation, output, or measurement), xt ∈ Rd an explanatory
variable (sometimes called input or design variable), ϵt a zero-mean random variable denoting a disturbance term or
measurement error, and θ (0)

∈ Rd an unknown parameter; with vT we denote the transpose of a vector v. It is common
practice to estimate the value of the unknown parameter θ (0) by least-squares linear regression: given input variables
x1, . . . , xt and observations y1, . . . , yt , this estimate is defined as θ̂t = arg minθ∈Rd

t
i=1(yi − xTi θ)2.

In many applications, notably control problems, the design variables xt are not given a priori, but have to be determined
by a decision maker. An important question is how (xt)t∈N should be chosen such that θ̂t is strongly consistent, meaning
that θ̂t converges a.s. to θ (0) as t grows large.

Lai et al. (1979) establish strong consistency of θ̂t under the condition

lim
t→∞


t

i=1

xixTi

−1

= 0, (2)

when the design sequence (xt)t∈N is deterministic, the disturbance terms (ϵt)t∈N form a martingale difference sequence
with respect to a filtration {Ft}t∈N, and supt∈N E[ϵ2

t | Ft−1] < ∞. In addition, they show that (2) is necessary for strong
consistency if the error terms (ϵt)t∈N are i.i.d. and

t
i=1 xix

T
i is invertible for some t ∈ N.
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If the design is not deterministic, (2) is not strong enough to guarantee strong consistency. Lai andWei (1982) show that
if xt is Ft−1-measurable for all t ∈ N, and supt∈N E[|ϵt |

2+δ
| Ft−1] < ∞ a.s. for some δ > 0, then θ̂t converges a.s. to θ (0) if

(2) holds a.s. and

lim
t→∞

λmin


t

i=1
xixTi


log


λmax


t

i=1
xixTi

 = ∞ a.s., (3)

where λmin(A), λmax(A) denote the smallest and the largest eigenvalue of a symmetric matrix A. They also give an example
where strong consistency does not hold, andwhere the left-hand side of (3) converges a.s. to a random variable. This implies
that for designs (xt)t∈N that satisfy (2) but violate (3) strong consistency can in general only be concluded if the design is
deterministic.

Now, suppose a design (xt)t∈N is predictable w.r.t. {Ft}t∈N (i.e. xt is Ft−1-measurable for all t ∈ N), and (xt)t∈N contains
a deterministic subsequence (xtj)j∈N such that

lim
j→∞


j

i=1

xtix
T
ti

−1

= 0. (4)

Intuitively one might expect that adding data can never worsen the quality of a least-squares estimate. Since the least-
squares estimate that only uses data (xtj , ytj)j∈N is strongly consistent, this would imply that the estimate θ̂t based on all
data (xt , yt)t∈N is strongly consistent as well. In general, this would imply that strong consistency follows if (2) is satisfied
on a deterministic subsequence of the design sequence. These considerations motivate us to study the question whether
indeed adding data can never worsen the quality of θ̂t .

A second motivation comes from sequential decision problems under uncertainty, where a decision maker simultane-
ously has to estimate unknown parameters and maximize a reward function that depends on these parameters. Broder and
Rusmevichientong (2012) and den Boer and Zwart (submitted for publication) are examples from the dynamic pricing liter-
ature that study such problems: the decisions xt = (1, pt)T ∈ R2 correspond to selling prices pt that have to be determined
by a firm, the output yt corresponds to observed demand in time period t ∈ N, and the objective of the firm is to maximize
the cumulative expected revenue

T
t=1 E[ytpt ] in T time periods. The challenge in these problems is that each selling price pt

does not only influence the immediately earned revenue, but also the quality of future parameter estimates which influence
the revenues earned in the future. Broder and Rusmevichientong (2012) analyze a pricing policy (called ‘‘MLE-CYCLE’’) in
which estimates are formed based on a deterministic design sequence. They show numerically that a similar pricing policy
(called ‘‘MLE-CYCLE-S’’) that uses all available data to form estimates has a better performance, but they do not provide a
mathematical justification. Their numerical results nevertheless seem to confirm the intuition that adding data can only be
beneficial.

In this brief paper we show that this intuition is not true. We consider the linear model (1), and measure the quality of
the least-squares estimate θ̂t by E[∥θ̂t − θ (0)

∥
2
]. In Proposition 1, Section 2, we provide a sufficient condition on xt+1 such

that

E[∥θ̂t+1 − θ (0)
∥
2
] > E[∥θ̂t − θ (0)

∥
2
].

We illustrate the condition for the simple, widely used linear model yt = θ
(0)
0 + θ

(0)
1 zt + ϵt .

Proposition 2, Section 3, shows that the deterioration of parameter estimates caused by adding data can, in a qualitative
sense, be quite bad: we provide an example of a design sequence for which the corresponding sequence of least-squares
estimators is strongly consistent, and show that this design sequence can be augmented by extra data points such that the
resulting sequence of least-squares estimators is not strongly consistent anymore.

2. Increasing expected estimation error by adding data

Consider the regression model (1). Assume that the error terms (ϵt)t∈N form a martingale difference sequence w.r.t. a
filtration {Ft}t∈N,

inf
t∈N

E

ϵ2
t+1 | Ft


> 0 a.s.,

and suppose xt is Ft−1-measurable, for all t ∈ N.
The least-squares linear regression estimate θ̂t of θ (0), based on (xi, yi)1≤i≤t , is equal to

θ̂t = arg min
θ∈Rd

t
i=1

(yi − xTi θ)2.



Download English Version:

https://daneshyari.com/en/article/1153079

Download Persian Version:

https://daneshyari.com/article/1153079

Daneshyari.com

https://daneshyari.com/en/article/1153079
https://daneshyari.com/article/1153079
https://daneshyari.com

