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a b s t r a c t

Data smoothing or regression kernels based on locational entropy embody the principle
that observations towards the extremes of the chosen data window should provide less
information than those at the midpoint. Weight patterns can be flexible, depending on the
choice of prior information density.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Data smoothing using local windows is commonly executed with kernel functions that attach diminishing weight to
observations indexed further from the current data point, taken as the window centre (Savitzky and Golay, 1964). A related
context is non parametric regression, where the index set consists of sequential values of an independent variable and
the object is to estimate the conditional expectation of a dependent variable (Jennen-Steinmetz and Gasser, 1988). The
Nadaraya–Watson (Nadaraya, 1964; Watson, 1964), Priestley–Chao (Priestley and Chao, 1972) and Gasser–Muller (Gasser
and Müller, 1984; Gasser et al., 1984) regression kernels are all instances. Li and Racine (2007) is an extended discussion in
an econometric context, also Richard et al. (2009) for time series prediction. A variety of kernel specifications are in use, with
profiles often based on common distribution functions, including the uniform as a kernel representation of a fixed window
unweighted moving average. The Epanechnikov kernel (Epanechnikov, 1969) is widely cited as an efficiency standard, as it
minimises the asymptotic mean integrated square error (AMISE), where the data are independently drawn from a common
underlying probability distribution (e.g. Wand and Jones, 1995).

Smoothing kernels in common use vary widely in their weighting profiles (Simonoff, 1996). The Epanechnikov
kernel is concave, while continuous kernels originating from continuous distributions, such as the Gaussian, have mixed
concave–convex profiles and points of inflexion. Optimality properties are commonly established in terms of loss functions
adapted to specific data generation structures. Thus the Epanechnikov kernel is AMISE in contexts with additive i.i.d.
disturbances. In data smoothing, the disturbance properties are commonly unknown, and the objective may simply be to
aid pattern comprehension (‘eyeballing’), much as in the lower order details of wavelet analysis.
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The present note suggests a different vantage point for the derivation of fixedwindowweights, originating in information
theory. The resulting kernel is strictly concave with a general resemblance to the Epanechnikov kernel, though less severe
on weight censoring away from the centre. For expositional convenience, the context adopted is data smoothing based on
discrete time data, but with some qualifications, the same framework can also apply to kernel regression (Section 4).

An informational approach to data smoothing can be subjectively rationalised in the following terms. In many data
smoothing contexts, very little prior information is available about the form of any underlying signal. Making an observation
xt at time t is resolving some, but not all, of the intrinsic uncertainty about its nature or reality. But informational collapse is
not complete because residual doubts remain—the observation may be unrepresentative. An observation on neighbouring
time points t ± τ should also contribute to the collapse of entropy at t , but progressively less so towards the edges of any
chosen window, suggesting that the weight profile should be uniformly concave. With such considerations in mind, the
choice of an information based weighting system is based on the following criteria:
(a) The smoothing weights should be preassigned and invariant. In particular, they should not be affected at any point by

the realised value of the current (dependent variable) observation, though the parameter choice can legitimately depend
upon the degree of random variability of the series as a whole.

(b) A rationalisation should exist in terms of a formal informational framework, such that observations closer to the
smoothing centre should be recognised as collapsing uncertainty to a greater extent than more distant. The weighting
scheme should assign progressively less weight to neighbouring observations further out from the centre of the
bandwidth. Moreover, the weight pattern within any given window should diminish at a greater rate, i.e. the weight
pattern is concave.

(c) Theweight formula should be flexible, able to handlemultiple bandwidth lengths in a simple one-parameter framework.

The suggested information theory framework is that of locational entropy (Bowden, 2012). Locational entropy is always
higher around the median or midpoint, corresponding here to the current data point, but diminishes away from the centre.
The approach requires the user to nominate a starting distribution, analogous to a prior in Bayesian statistics, though the
end result is the locational entropy weighting system, in place of the Bayesian posterior. The techniques are illustrated with
a uniform distribution, corresponding to the Bayesian uninformative prior, defined by the width of the window as a single
parameter.

The scheme of development is as follows. The entropic weighting procedure is described on a general level in Section 2.
Section 3 implements the procedure in terms of a maximum entropy discrete time kernel. Section 4 extends to the metric
windowapproach commonly used in regression. An illustrative application is the returns on onshore versus offshore Chinese
RMB bonds.

2. The generic entropy based kernel

As earlier noted, the proposed kernel is to reflect the contribution of neighbouring time points to the collapse of
uncertainty concerning the current observation, as the centre of the kernel. The uncertaintymeasure adapted for the purpose
is locational (or partition) entropy (Bowden, 2012) with a suitably chosen probability density as the point of departure. The
kernel weights are then obtained by normalising the locational entropy ordinates to add to unitywithin the chosenwindow.
The development in this section outlines the generic procedure.

Given a random variable υ with distribution function F , the locational entropy function h at any given point τ has value:
hτ = −[F(τ ) ln F(τ ) + (1 − F(τ )) ln(1 − F(τ ))]. (1)

For a given value τ , expression (1) measures the Shannon entropy1 associated with a dichotomous random variable that
takes value unity if υ > τ , and zero otherwise; its entropy can be regarded as a measure of the uncertainty of position
attached to the chosen point τ . The nonnegative function h has a maximum of ln 2 at the median of F , and values of zero at
the end points of the range. Its expected value with respect to the distribution F is 1/2. The locational entropy function h
does not necessarily mirror the density f associated with F . Thus for long tailed densities such as the logistic, the tails are
overemphasised, which have a greater amount of entropy. A uniform distribution for F results in a concave h and hence a
weighting function with an internal maximum.

In what follows, the support of the locational entropy function h is taken as discrete to correspond to discrete data. On
the other hand, the parent F can have either discrete or continuous support, even the infinite real line. All that is necessary
in either case is to renormalise to ensure that


τ hτ = 1. Starting with a continuous parent distribution has advantages in

a greater menu of choice of kernel function shapes for discrete time kernel windows. Likewise, a continuous time uniform
distribution as a choice for F is the Shannon entropy maximising distribution, but this is not automatically true in discrete
time.

In the present implementation, F will be taken as a uniformdistribution, whosemidpoint (median) and range correspond
to the chosen window. This is equivalent to saying that each point inside the window starts with an uninformative weight,
until the user forms an attitude as to what the weight should be. In forming ideas about relative uncertainty to be assigned,
the user acts as though he or she adopts locational entropy as the basis. To this extent, the chosen approach reflects criteria
(a)–(c) of Section 1. However, similar techniques can be utilised starting with any alternative distribution function.

1 For example


i f (τi) ln f (τi) or

f (τ ) ln f (τ )dτ .
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