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a b s t r a c t

In this paper, we consider the problem of robust M-estimation
of parameters of nonlinear signal processing models. We investi-
gate the conditions under which estimators are strongly consistent
for convex and non-convex penalty functions and a wide class of
noise scenarios, contaminating the actual transmitted signal. It is
shown that the M-estimators of a general nonlinear signal model
are asymptotically consistent with probability one under differ-
ent sets of sufficient conditions on loss function and noise dis-
tribution. Simulations are performed for nonlinear superimposed
sinusoidal model to observe the small sample performance of the
M-estimators for various heavy tailed error distributions, outlier
contamination levels and sample sizes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of parameters of nonlinear regression models is a fundamental problem in signal
processing and time series analysis. In several real life applications, the data signals dealt with can
be modeled as:

yt = ft (θ) + et , t = 1, . . . , n, (1)

where, ft (θ) is the noise free nonlinear signal characterized by an unknown parameter vector θ and et
is a real valued additive noise. Themost common technique for estimating θ in (1) is the nonlinear least
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squares (NLS). θ̂NLSE
n , the nonlinear least squares estimator of θ0, the true parameter vector, is given by

θ̂NLSE
n = arg min

θ

n
t=1

|yt − ft (θ)|2 .

Asymptotic (as n → ∞) statistical properties of θ̂NLSE
n are studied in [9,13,22,23]. It is however well

known that θ̂NLSE
n is sensitive to the presence of heavy tailed noise, outliers in the data and other depar-

tures from the underlying distributional assumptions. M-estimators are themostwidely used remedy
to this problem. Reference may be made to [3,4,2,6–8,25] among others. For signal processing appli-
cations, see for example [10,19,20,24]. TheM-estimator of the unknown parameter vector is obtained
by minimizing

ln (θ) =

n
t=1

ρ (yt − ft (θ)) . (2)

The M-estimator of the signal parameters is thus given by

θ̂M
n = arg min

θ∈S
ln (θ) . (3)

The set S in (3) is characterized in Assumption 3. Here, ρ (.) is a suitably chosen non-negative penalty
function. One popular choice for ρ is the Huber’s function:

ρh (z) =


z2/2, if |z| ≤ c,
c|z| − c2/2, if |z| > c.

(4)

Taking c → ∞, (4) gives θ̂M
n = θ̂NLSE

n and θ̂M
n becomes the least absolute deviation estimator for

c = 0. In addition, ρh (z) is a convex function of z for any c. However, ρ (.) in (2) need not be convex
in general.

In this paper, we prove the strong consistency of θ̂M
n under very general assumptions on the

distribution of noise which contaminates the actual transmitted signal and also on ρ (.).
In particular, we address the following questions:

• Assuming n → ∞, under what condition the true parameter θ0 is the unique global minimum of
limiting ln (θ)?

• Is there any special advantage of considering ρ (.) to be convex?
• What are the additional requirements for strong consistency if ρ (.) is non-convex?

We give very general answers to the above questions in formof some sufficient conditions. In addition,
we provide simple examples and simulation studies to illustrate our results. Compared to the previous
attempts [3,5,15], our proof does not assume θ0 to be the unique globalminimumpoint of E (ln (θ) /n),
which may not be true.

The rest of the paper is organized as follows. In Section 2, we present the main consistency results
of the paper. Section 3 presents illustrative examples and simulation studies. Finally, we conclude in
Section 4.

2. Consistency results

Let us define

l̄n (θ) = E (ℓn (θ) /n) =
1
n

n
t=1

E (ρ {yt − ft (θ)}) . (5)

Our proof of consistency consists of two crucial steps. First, we show that 1
n (ln (θ) − E (ln (θ))) tends

to zerowith probability one (w.p.1), uniformly for all θ ∈ S. Next, we show that θ0 is the unique global
minimum of l̄n (θ) for all n. Subsequently, wemake use of a standard results [9,21,16] to conclude that
θ̂M
n → θ0, with probability 1.
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