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a b s t r a c t

An almost sure local limit theorem for Markov chains is investigated.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction and results

Let {ξk}k∈Z,Z = {. . . ,−1, 0, 1, 2, . . . , k, . . .}, be a strictly stationary Markov chain defined on some probability space
(Ω,F , P). For Borel functions f , Xk = f (ξk) defines a family of strictly stationary sequences. Let Sn =

n
k=1 Xk, n ∈ N =

{1, 2, . . . , n, . . .}; R is the real line. Denote by T the usual shift operator on RZ, i.e., for ω := (ωk; k ∈ Z) ∈ RZ, the element
Tω ∈ RZ is given by (Tω)k = ωk+1, k ∈ Z. We call {ξk} mixing (ergodic) if T is mixing (ergodic); see Ash, 2000, Chapter 8
or Bradley, 2007, Chapter 2. In this work, if not stated otherwise, we assume that the state space S of {ξk} is countable,
so by Theorem 7.7 on p. 212 in Vol. I of Bradley (2007) it follows that {ξk} is mixing iff it is irreducible and aperiodic
(or equivalently β-mixing). In the case of a strictly stationary Markov chain whose state space is a finite set, {ξk} is mixing
iff it is at least exponentially fast ψ-mixing (cf. Bradley (2007, Vol. I, Theorem 7.14, p. 220)).

Suppose that the values of Sn are all of the form na+ kd, k ∈ Z, with d being the maximal span. We say that {ξk} satisfies
the normal local limit theorem (LLT) if there exist sequences {an}, {bn}, bn → ∞, such that

bnP(Sn = κn)→n n(κ) :=
1

√
2π

e
−κ2
2 as n → ∞,

where the sequence κn, n ∈ N, of the form na + kd, satisfies

lim
n→∞

κn − an
bn

= κ.
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The LLT for finite state Markov chains was investigated in Pepper (1927), Bityuckov (1948), Kolmogorov (1949), Manevič
(1953) (see also Gnedenko, 1988, Chapter 3, Section 20, pp. 116–122). For countable state Markov chains satisfying E(ξ 21 ) <
∞, the (normal) LLT is discussed in Nagaev (1957, 1961, 1963), and Séva (1995) while the case E(ξ 21 ) = ∞ is analyzed in
Aaronson and Denker (2001) and Szewczak (2008b).

We say that {ξk} satisfies the almost sure (normal) local limit theorem (ASLLT) if there exist sequences {an}, {bn}, bn →

∞, such that

1
ln n

n
ν=1

bν
ν
I[Sν=κν ]

a.s.
→ n(κ) as

κν − aν
bν

→ν κ,

where the κν are of the form νa + kd. For the case of independent, identically distributed random variables, the normal
ASLLT is studied in Chung and Erdős (1951), Csáki et al. (1993), Denker and Koch (2002), Giuliano-Antonini and Weber
(2011) and Weber (2011). As pointed out in Weber (2011, Remark 4.1), the argument in Denker and Koch (2002) needs
some complementary explanations: for the evolution of the ASLLT the reader is referred to Denker and Koch (2002) and
Weber (2011, Section 4).

In this workwe address problem 4 of Denker and Koch (2002) and prove an almost sure local limit theorem for uniformly
recurrent Markov chains in the case where the values of Sn are all of the form na + kd, k ∈ Z, with d being the maximal
span. This question was raised by Denker and Koch (2002, p. 149, lines −2, −1). Our result in particular contains the case of
finite state Markov chains with all strictly positive transitions between states. For example let {ξk} be the 0–1 state Markov
chain generated by a 2 × 2 matrix P, where

P =


p11 p12
p21 p22,


pij > 0, i, j = 1, 2. By the analogy to the i.i.d. case let us call {ξk} Markov trials. Set

γ = 1 − p12 − p21, π0 =
p21

p12 + p21
, π1 =

p12
p12 + p21

.

Consider {f (ξk)} where f (0) = −π1, f (1) = π0. It is not difficult to see (cf. Szewczak, 2012, p. 1206) that the asymptotic
(or spectral) variance σ 2 of {f (ξk)} satisfies

σ 2
= Eπ (f 2(ξ0))+ 2


n≥1

Eπ (f (ξ0)f (ξn)) = π0π1


1 +

2γ
1 − γ


= π0π1

1 + γ

1 − γ
.

It turns out that for Markov trials the following corresponds to Corollary 1 in Denker and Koch (2002):

1
ln n

n
ν=1

σ
√
ν
I[Sν=κν ]

a.s.
→ n(κ) as

κν

σ
√
ν

→ν κ, (1.1)

where the κν are of the form −νπ1 + k. The relation (1.1) is the immediate consequence of Theorem 1.
We say that {ξk} is uniformly recurrent if the condition below holds: Condition (Ψ ):

0 < ψ ′
= inf

y,x∈S

P(ξ1 = y | ξ0 = x)
P(ξ1 = y)

and sup
y,x∈S

P(ξ1 = y | ξ0 = x)
P(ξ1 = y)

= ψ∗ < ∞.

From Corollary 22.11 on p. 381, Volume II, and Theorem 7.5, on p. 210, Volume I, in Bradley (2007), it follows that if {ξk}
is uniformly recurrent then it is at least exponentially fast ψ-mixing. For example this is the case when {ξk} is driven by a
stochastic matrix P with all strictly positive elements.

Our main result is the following statement.

Theorem 1. Suppose {ξk} is a uniformly recurrent strictly stationary Markov chain and f is a Borel function such that the
distribution of f (ξ1) is concentrated on a + kd, k ∈ Z, with d being the maximal span and E|X1|

3 < ∞. Then

1
ln n

n
ν=1

σ
√
ν
I[Sν=κν ]

a.s.
→ dn(κ) as

κν − aν
σ
√
ν

→ν κ,

where Sν =
ν

k=1 f (ξk), σ
2

=


k∈Z Cov(X0Xk), aν = νE(X1) and the κν are of the form νa + kd.

The proof of Theorem 1 uses ideas fromGiuliano-Antonini andWeber (2011) and Szewczak (2003). The key role in this proof
is played by (see Lemma 2) Edgeworth expansion in the conditional, or more generally operator, form (cf. Szewczak, 2006,
2008a,b). The work is organized as follows: auxiliary results required for the proof of Theorem 1 in Section 3 are established
in Section 2.
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