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a b s t r a c t

We provide the identifiability conditions for the covariate effects modeling of bivariate
survival data when one survival time is dependently censored by the other survival time.
The covariate effects are specified through three components of the copula decomposition.
Many commonly used copula families are shown to satisfy the identifiable condition. A
condition for causal interpretation is also provided.
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1. Introduction

In clinical trials, the time to disease X is often subject to censoring by another survival time Y . When X and Y are
dependent, the censoring is informative. Under informative censoring (also called dependent censoring), the marginal
distribution of X is not identifiable. Therefore it is impossible to estimate the effect of a covariate Z on X without additional
assumptions. Robins (1995a) studied the identifiability issues for this informative censoring setting with a binary covariate
Z . Since it is not easy to separate out the covariate effect on X directly from the joint covariate effects model on X and Y ,
Robins (1995a) eventually focused on the simple case that covariate Z does not affect the dependence structure between
X and Y . For this simple case, the covariate effect of Z on X is easy to interpret and conditions were imposed for causal
interpretation of this effect. Robins (1995b) developed the artificial technique for inference on the covariate effects on X
under these assumptions. Similarly, Lin et al. (1996) imposed location-shift covariate effects on X and Y separately for the
case of no covariate effect on the dependence structure between X and Y . The artificial censoring technique is then used
to derive an asymptotic normal estimator of treatment effect of Z on X . Further generalization of the artificial censoring
techniques in Chang (2000), Ghosh and Lin (2003), Lin and Ying (2003) and Peng and Fine (2006) all assumed that covariate
Z does not affect the dependence structure.
Other papers not using artificial censoring technique also are based on the assumption that covariate Z does not affect

the dependence structure. For example, Peng and Fine (2007) proposed fitting marginal regression with time-varying
coefficients and the dependent structure from a copula family with time-varying copula parameter. However, the time-
varying copula parameter is not affected by covariate Z .
Hsieh et al. (2008) proposed an alternativemethod that allows covariate Z to affect the dependence structure by assuming

that the dependence structure betweenX and Y belongs to a copula familywhose copula parameter changeswith Z . The joint
distribution of X and Y can be separated into three components:marginal distributions of X and Y , and a copula representing
the dependence structure. This decomposition allows easy interpretation of covariate effects on X directly. This paper spells
out the identifiability condition from the view of this copula approach.
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Section 2 discusses the identifiability condition. We specify the covariate model through its effects on the three model
components: two marginals and the copula. The identifiable conditions are derived from this point of view. We also show
that many copula families satisfy this identifiable condition. Section 3 gives a corresponding version of Robins’ assumption
for causal interpretation. Summary discussions are contained in Section 4.

2. Identifiable conditions for covariate model

2.1. Model notations

The joint survival function of X and Y is denoted by S(x, y) = pr(X ≥ x, Y ≥ y). Generally the joint survival func-
tion of two variables can be decomposed into three components: the marginal distributions of each variable and the cor-
relation structure represented by a copula — a joint survival function on the unit square [0, 1] × [0, 1]. That is, S(x, y) =
C{S1(x), S2(y)}, where S1(x) = pr(X ≥ x) and S2(y) = pr(Y ≥ y) are themarginal survival functions of X and Y respectively,
and C(s1, s2) is the copula.
Using this decomposition, we can consider the covariate effects separately on three components. The covariate effect on

the survive time X can be represented by monotone non-decreasing functions m1,z(t) so that m1,z(X) given Z = z has the
same marginal distribution as X given Z = 0. Therefore, pr(X ≥ t|Z = z) = pr(X ≥ m1,z(t)|Z = 0). That is, S1(t; z) =
S1{m1,z(t); 0}. The covariate effects model is represented by a familyM1, the collection of the possible m1,z . Similarly, the
covariate effects model on Y is modeled as S2(t; z) = S2{m2,z(t); 0} with m2,z ∈ M2. The copula given Z = z is indexed
by αz ∈ A. That is, C(s1, s2; z) = C(s1, s2|Z = z) = Cαz (s1, s2). Thus the overall covariate effects on the bivariate survival
times are denoted by (m1,z,m2,z, αz), with the possible values of the three components belong to familiesM1,M2 and A
respectively for all z ∈ Z.

Remark. Notice the above covariate effects model on the marginal include all possible univariate covariate effects models
and m1,0(t) = t always. For example, a nonparametric covariate model is represented byM1 = {m(t) : m(0) = 0,m(·)
non-decreasing left-continuous mapping from [0,∞) to [0,∞)}. The accelerated failure timesmodel corresponds toM1 =

{m(t) = exp(θ1z)t : −∞ < θ1 < ∞}. The proportional hazards model corresponds toM1 = {m(t) = S−10 [S0(t)
exp(θ1z)] :

−∞ < θ1 <∞, S0(t) the baseline survive function, a non-decreasing left-continuous mapping from [0,∞) to [0, 1]}.

2.2. Identifiable conditions

Due to the copula decomposition

S(x, y; z) = Cαz {S1(x; z), S2(y; z)}, (1)

it is obvious that the identifiability of S(x, y; z) requires all three components are identifiable: (I1) If S1{m∗1,z(t); 0} =
S1{m1,z(t); 0} for all t ≥ 0, then m∗1,z = m1,z ; (I2) If S2{m

∗

2,z(t); 0} = S2{m2,z(t); 0} for all t ≥ 0, then m
∗

2,z = m2,z ;
(I3) If Cα∗(s, t) = Cα(s, t) for all (s, t) ∈ [0, 1] × [0, 1], then α∗ = α.
When the distribution of X and Y are continuous, the identifiability of the three components will imply the identifiability

of the joint distribution S(x, y; z) for x ≥ 0, y ≥ 0 and z ∈ Z. However, when X is informatively censored by Y , then we only
observe T = min(X, Y ), δ = I{T = X} and D = Y . Therefore, the observable region for the joint survival distribution is only
y ≥ x ≥ 0. So we need the identifiability of S(x, y; z) for y ≥ x ≥ 0 and z ∈ Z. Let yz = inf[t : S2{m2,z(t); 0} = 0], then yz
denotes the upper boundof the support of Y given Z = z underm2,z . Note that yz maybe∞. Since no data can be observed for
Y > yz , the identifiability will require (a) S1{m1,z(yz); 0} < 1; (Otherwise, all αz values result in the same joint distribution
on the observable region, thus unidentifiable.) and (b) if S1{m∗1,z(t); 0} = S1{m1,z(t); 0} for all 0 ≤ t ≤ yz , thenm

∗

1,z = m1,z .
So (I1) needs to be replaced by the stronger necessary condition (I1*): For anym2,z and yz = inf[t : S2{m2,z(t); 0} = 0], we
have S1{m1,z(yz); 0} < 1, and that S1{m∗1,z(t); 0} = S1{m1,z(t); 0} for all 0 ≤ x ≤ yz impliesm

∗

1,z = m1,z .
The conditions (I1*), (I2) and (I3), while necessary, still do not ensure the identifiability under the informative censoring.

We also need to enhance (I3) to a stronger condition of a lower-right tail identifiable copula family.

Definition 1. A copula family {Cα(s, t), α ∈ A} is called lower-right tail identifiable if

Cα(s, t) = Cα∗(s∗(s), t)

on an open set s0 < s < 1 and 0 < t < t0 implies that α = α∗ and s∗(s) = s on s0 < s < 1.

We will assume (I3*): Cαz (s, t) belongs to a lower-right tail identifiable copula family {Cα(s, t), α ∈ A}, for all z ∈ Z.

Theorem 1. Assume that the distributions of X and Y are absolutely continuous, and the identifiable condition (I1∗) and (I2) are
satisfied. Then (I3∗) is a sufficient condition for the identifiability of joint covariate effects model under informative censoring.
When the univariate covariate modelsM1 andM2 are nonparametric, the condition (I3∗) is also necessary.



Download English Version:

https://daneshyari.com/en/article/1153227

Download Persian Version:

https://daneshyari.com/article/1153227

Daneshyari.com

https://daneshyari.com/en/article/1153227
https://daneshyari.com/article/1153227
https://daneshyari.com

