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which ensures that the resulting test has size « + o(N~!), where 0 < @ < 1 is the
significance level and N is the sample size. Recently, Kakizawa (2012) has revisited the
Chandra-Mukerjee/Taniguchi adjustments in a unified way, since Chandra and Mukerjee
(1991) and Taniguchi (1991b) originally considered the test of the simple null hypothesis,
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1. Introduction

The null distributions of the likelihood ratio, Rao’s and Wald’s test statistics have asymptotic expansions in powers of N1,
where N is the sample size. The Bartlett/Bartlett-type adjustment is then designed to make the chi-squared approximation
accurate up to order N~'. Historically, it was first exploited by Bartlett (1937) in his classical test for homogeneity of
variances. In general, a simple mean adjustment for the likelihood ratio test statistic LR™ through multiplication by a
constant of the form 1+ b/N implies P™[(1 4 b/N)LR™ < x] = pr[x? < x] + o(N~") under the null hypothesis, where
f is the number of restrictions under test; see Lawley (1956) and Hayakawa (1977). This fact became widely known as
the Bartlett correctability of LR™, where substitution of a suitable consistent estimator for b is allowed. Among the vast
literature, we further mention Taniguchi (1988), Bickel and Ghosh (1990), Jensen (1993) and Kakizawa (2011) for the
theoretical issues.

Strangely, the test statistics T™ other than LR are, in general, not Bartlett correctable. Thus, Chandra and Mukerjee
(1991) and Taniguchi (1991b) first proposed the Bartlett-type adjustments on the basis of additional information of score
or the maximum likelihood estimator (MLE), respectively. Cordeiro and Ferrari (1991) gave a kth order polynomial in T™
without a constant term, where k € N and the coefficients are determined according to an asymptotic expansion for the
null distribution of T™); see Kakizawa (1996) for the corresponding monotone version. Note that for the case f = k = 1,
these proposals (Chandra and Mukerjee, 1991; Cordeiro and Ferrari, 1991; Taniguchi, 1991b) are essentially identical to the
traditional multiplicative Bartlett adjustment. However, several attempts (Chandra and Mukerjee, 1991; Taniguchi, 1991b)
and a unified treatment for the Chandra-Mukerjee/Taniguchi adjustments (Kakizawa, 2010) were restricted to the test of
the simple null hypothesis. Extending Mukerjee (1992), who considered Rao’s test statistic about a scalar parameter in the
presence of a scalar nuisance parameter, Kakizawa (2012) has recently revisited the Bartlett-type adjustments for a class of
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test statistics in the framework of a composite hypothesis about a subvector of the parameters, where both the parameter
of interest and the nuisance parameter are multidimensional.

Notice that the literature on the Cordeiro-Ferrari adjustment (CF adjustment for short) with k = 2, 3 is very extensive;
some related papers during the last two decades are found in Kakizawa (2012). A contribution of this paper is to generalize
the CF adjustment in a sense, by noting that it is not a unique form, as pointed out by Kakizawa (2011) for the traditional
Bartlett adjustment (1 + b/N)LR™. Although, in this paper, we focus on the independent and identically distributed case
for notational simplicity, we can construct the Bartlett-type adjustments even in a non-identical or dependent case where
some regularity conditions are met for the log-likelihood derivatives according to the situations under consideration. So, the
results are applicable in wide generality since they allow both the interest and nuisance parameters to be vector-valued, for
which there is no assumption regarding the global parameter orthogonality.

2. Preliminaries
2.1. Notation

Let PQ(N ) denote the -distribution of X1, ..., Xy, which are independent and identically distributed random vectors,
taking values of R%, according to a density f(x, #), # € ®, where ® is an open convex subset of RP. Throughout this paper,
we assume the same regularity conditions as in Kakizawa (2012). The parameter vector @ = (6, . .., 6,)" is composed of two
parts, a parameter of interest 81y = (01, ..., 6,,)" and a nuisance parameter 8.3y = (6p,+1, - - ., Op,4p,)’ Withp = p1 + po,
where § = (6, 0’(2))’.and © =0 x O().The log-likelihood is denoted by .£® (0)‘ = Zf\’zl logf(?(i, 0). We want to test
a composite hypothesis Hy : 01y = (1) against Hy : 01y # 0(1y0, where 61y0 € Oy is specified while 65, € O () remains
unspecified. Letﬁﬁﬁ’f € O be the MLE of 6, and let EEIZ\]))ML € O(y) be the MLE of 6,y under the constraint 1) = (1), where
we write

~(N) 0(1)0
0, = »5(1\1) .
(2)ML

As usual, the Rth partial derivative of the log density log f (x, #) with respect to € is denoted by

] a .
Ejr--j;e(x’o):ﬁ“ ﬁ logf(x,0) (ReN; ji,....jr€{l,...,p}.
i

We introduce I = j; - - - jr for notational simplicity and denote the cumulants of the £, (X, 6)’s by

Vig, ....lg, (0) = cumg[£y, (X, 0), ..., Ly (X, 0)],
where descending order Ry > --- > R, > 1 on the size R; = |Ig] is assumed, since Vig, veoalgy () is symmetric under
permutation of {Ig,, ..., Iz, }. We assume that

Vi () =0, v, (0) + 0, (0) =0, i (0) + ()5 (0) + vy 5 (0) = 0,
Vitiaisia 0 + <4>Vj1jzj3,j4 @ + (3)111‘1]2,;3;4 @ + <6>VJ'1]2J3J4 0 + Vit.ja.J3.da 0 =0
for all # € ©, where (n) before a term with indices is a sum of n similar terms obtained by index permutation. We make use

of the Bartlett identities (1) to eliminate vjj, (8), vj,j,j; (8) and vj j,;j, (8) in subsequent calculations. Also, according to the
partition § = (0/(1), 0,))', we stack the element

(1)

Zj(N) ) = Z E i(X;,0) and v, () = _ij(o)

N]/Z
as follows:
2™ 1. Ell\l;() O _(van@) vaz ()
[]' ()]}:1,.4. g))(a) [V],k( )]],ke[l,...,p}— V(21)(0) v(22)(0) .

They are the p x 1 score vector Z™ () and the p x p Fisher information matrix v(f) = varéN) [Z™(#)], respectively. It should
be emphasized that we have no assumption regarding the so-called global parameter orthogonality, i.e., v(12)(0) = Op, p,,
where 0y, p, is the p; x p, zero matrix. Further, we write

]<1~>]R(o) Nl/z Z{zh i Xi, 0) — vy, (@) (R=2,3,...).

Unless otherwise stated, we use the letters {j, k} as indices of @ that run from 1 to p, the letters {a, b} as indices of 8y,
that run from 1 to p; and the letters {r, s} as indices of 6 that run from p; 4 1 to p. We adopt the Einstein summation
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