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a b s t r a c t

In this notewe compare bivariate additivemodels with respect to their Pearson correlation
coefficients, Kendall’s τ concordance coefficients, and Blomqvist β medial correlation
coefficients. The conditions that enable the comparisons involve variability stochastic
orders such as the dispersive and the peakedness orders. Specifically we show that we can
compare the Kendall’s τ concordance coefficients of Cheriyan and Ramabhadran’s bivariate
gamma distributions, in spite of the fact that it is hard (and not necessary) to compute
them.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Z1 and Z2 be two random variables that a probabilist uses to approximately describe some real world situation. It is
often desired that Z1 and Z2, on one hand not be independent, and on the other hand not be totally dependent. A common
way of doing this sort of modelling is to introduce three independent random variables, X1, X2, and Y , and then model Z1
and Z2 by

Z1 = g(X1, Y ) and Z2 = g(X2, Y ), (1.1)

where g is some bivariate function. In the setup (1.1), X1 and X2 indicate the ‘‘individuality’’ that is associated with Z1 and
Z2, whereas Y indicates the factors that give rise to the partial dependence between Z1 and Z2.

In the setup (1.1), it is sometimes of importance to figure out the influence of Y on the strength of positive dependence
between Z1 and Z2. That is, suppose that the dependence between the two random variables in (1.1) can be chosen to be
modelled using Y yielding (Z1, Z2) as in (1.1), or that it can be chosen to be modelled usingY yielding (Z1,Z2) as followsZ1 = g(X1,Y ) and Z2 = g(X2,Y ).

The question that arises then is what conditions on Y andY imply that (Z1, Z2) is ‘‘less positively dependent’’ than (Z1,Z2).
For example, Li and Pellerey (2011) considered, among other things, the comparison of

(Z1, Z2) = (min{X1, Y },min{X2, Y })
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and

(Z1,Z2) = (min{X1,Y },min{X2,Y }).

They showed that if Y is larger than Y in the ordinary stochastic order, then (Z1,Z2) is more positively dependent than
(Z1, Z2) in the sense of the concordance order, that is, the copula of (Z1,Z2) is greater than, or equal to, the copula of (Z1, Z2)
over the whole unit square; see, for example, Nelsen (2006). Fang and Li (2011) considered the comparison of

(Z1, Z2) = (max{X1, Y },max{X2, Y })

and

(Z1,Z2) = (max{X1,Y },max{X2,Y }).

They showed that if Y is smaller than Y in the ordinary stochastic order, then (Z1,Z2) is more positively dependent than
(Z1, Z2) in the same sense that was described above.

The purpose of this note is to compare

(Z1, Z2) = (X1 + Y , X2 + Y ) (1.2)

and

(Z1,Z2) = (X1 +Y , X2 +Y ) (1.3)

in a sense of positive dependence. More explicitly, we find conditions on Y andY that yield a stronger positive dependence
betweenZ1 andZ2, than between Z1 and Z2.

Random vectors of the form (1.2) have been used in the literature to model a variety of applications. Here is a sample of
such usages:

• Reliability theory. The randomvector in (1.2) can represent a replacementmodel similar to amodel inMarshall and Shaked
(1982, page 263). Specifically, in a reliability system that performs two tasks, Y is the lifetime of the original device that
performs both tasks, and upon its failure, it is replaced by two devices with lifetimes X1 and X2, each of which performs
only one of the tasks. Then (Z1, Z2) is the vector of the time periods of the performance of the two tasks.

• Risk analysis. Bauerle and Muller (1998, page 66) studied models of pairs of n-dimensional risky portfolios. In the case
when n = 1, their model for (dependent) risks, that belong to a certain group, is (g(X1, Y ), g(X2, Y )), for some bivariate
function g , where X1 and X2 are the individual risk factors, and Y is the group-specific risk factor. Specifically, when
g(x, y) = x + y, the model of Bauerle and Muller (1998) reduces to (1.2).

• Combat target detection. Youngren (1991) considered modelling the detection of an enemy unit that has some target
elements such as a tank or a truck.When the unit has two elements, Youngren (1991, page 574)modelled the times to the
detection of the elements by (1.2), where the randomquantity Y captures the contribution of the common environmental
factors on the time for detection of both elements, and the random quantity Xi captures the contribution of the other
factors to the time of detection of element i, i = 1, 2.

Remark 1.1. At first glance it may not be clear what we may assume about Y andY in (1.2) and (1.3) in order forZ1 andZ2
to be ‘‘more positively dependent’’ than Z1 and Z2. However, upon some reflection wemay guess that ifY is ‘‘more variable’’
(or ‘‘more dispersed’’) than Y , then wemay expectZ1 andZ2 to be ‘‘more positively dependent’’ than Z1 and Z2. The intuitive
reason behind this is that the role of Y is to introduce the dependence between Z1 and Z2, and it does that by adding the
same random quantity to both X1 and X2. Thus, the ‘‘more variable’’ Y is, the more it ‘‘forces’’ the sums X1 + Y and X2 + Y
to vary, but to do it ‘‘together’’ and hence ‘‘be like each other’’, and as a result the ‘‘more dependent’’ Z1 and Z2 should be.
Note that in the extreme case when Y is degenerate (that is, Y is ‘‘as small in variability as possible’’), then Z1 and Z2 are
independent. �

Verifying the intuition that is described in Remark 1.1, some of the results in this note are of the following form: If Y is
smaller thanY in some variability sense, then (Z1, Z2) of (1.2) is smaller than (Z1,Z2) of (1.3) with respect to some positive
dependence sense.

Technically, we found themodels in (1.2) and (1.3) to be quite complex for the purpose of comparing the copulas that are
associated with (Z1, Z2) and with (Z1,Z2). Thus our present study is more humble in the sense that we compare the Pearson
product-moment correlation coefficients, the Kendall’s τ concordance coefficients, and the Blomqvist’s β medial correlation
coefficients of (Z1, Z2) and (Z1,Z2) in (1.2) and (1.3).

It is worthwhile tomention that a comparison of the strength of dependence in the sense of SI (stochastic increasingness)
ofmodels that are similar to the ones in (1.2) and (1.3), but still quite different than these, is given in Proposition 3.1 of Khaledi
and Kochar (2005).

In the next section we obtain results that compare (Z1, Z2) and (Z1,Z2) with respect to their Pearson product-moment
correlation coefficients. These results are quite straightforward, but their importance is that they make up our first
formalization of the intuition that is described in Remark 1.1. Our second formalization of that intuition is given in Section 3,
where we develop comparisons of (Z1, Z2) and (Z1,Z2) with respect to their Kendall’s τ concordance coefficients. A third
formulation of the above intuition is described in Section 4, where we compare (Z1, Z2) and (Z1,Z2) with respect to their
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