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a b s t r a c t

The uniform law for sojourn times of processes with cyclically exchangeable increments is
extended to the case of random fields, with general parameter sets, that possess a suitable
invariance property.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Among the most interesting and important problems on the pathwise behaviour of random processes is the one on the
distribution of the time spent by the trajectory of the process under a given (possibly random) line. The simplest question
to be asked in that context is, of course, whether the trajectory of the process will cross that line at all. Historically, the first
problem of that kind was perhaps the famous ballot theorem that effectively asserts that, for a simple symmetric random
walk conditioned to be at point−k < 0 at time n, the probability that the trajectorywill stay below zero on (0, n] is k/n (for a
historical background and the development of ballot theorems, see Takács, 1997). The result is an immediate consequence of
a simple invariance property of the randomwalk and can readily be extended to randomwalks with cyclically exchangeable
integer-valued jumps ≥ −1 (see e.g. in Takács (1997, Theorem 7.6.1)).

It turned out that there are more interesting distributional results for sojourn times that are also simple consequences of
some invariance properties of the processes in question. One of them is the uniform law for the sojourn time of the negative
half-axis in a simple symmetric random walk conditioned to be at zero at the terminal time, of which the continuous time
analog is the uniformity of the distribution of the time spent below zero by the standard Brownian bridge on [0, 1], the
result going back to Lévy (1939) (that paper also contained the arc-sine law for the negative sojourn time of the Brownian
motion on [0, 1]). These laws were later generalised to skew Brownian motion and skew Bessel processes, with positive
sojourn times that follow a generalised arc-sine law (Lamperti, 1958; Barlow et al., 1989); see also Watanabe, 1995 for a
characterisation result.

In the mid-1990s, the uniform laws for sojourn times were extended to suitable Lévy bridges in Fitzsimmons and
Getoor (1995), and necessary and sufficient conditions for such laws were provided for bridge processes with exchangeable
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increments in Knight (1996). It appears that Kallenberg (1999) was the first paper to note that the argument from Knight
(1996) also extends (with conditions) to any measurable bridge process with cyclically exchangeable increments (or,
equivalently, any measurable stationary periodic processes on R+).

The nice invariance property exploited in Knight (1996) allows one to vastly simplify arguments proving some seemingly
complex results (the reader may wish to compare the proofs in Knight, 1996 with those in Fitzsimmons and Getoor, 1995).
This invariance property is discussed in Chaumont (2000) andChaumont et al. (2001), and is due to the cyclic exchangeability
of increments which is defined as follows.

Let X = {X(t) : t ∈ [0, 1]} be a measurable real-valued stochastic process. We say that X has cyclically exchangeable
increments if, for any u ∈ [0, 1], the process

Xu(t) :=


X(u + t) − X(u) + X(0) for 0 ≤ t < 1 − u,
X(1) − X(u) + X(u + t − 1) for 1 − u ≤ t ≤ 1,

has the same distribution as X . The simplest examples of such objects are Lévy processes and bridges, and the uniform
empirical processes.

Introduce the ‘‘sojourn function’’
F(X, x) = λ


t ∈ [0, 1] : X(t) ≤ x


, x ∈ R,

where λ is the Lebesgue measure on R. The value F(X, x) is the (random) duration of time the process X spent below or at
the level x. Then the following result on the uniformity of the negative sojourn time holds true (see e.g. Kallenberg, 1999 or
Chaumont et al., 2001).

Theorem 1. If X has cyclically exchangeable increments, X(0) = X(1) = 0 and F(X, ·) is continuous a.s., then F(X, 0) ∼

U(0, 1).

In what follows, we will be interested in situations where X(0) = X(1), in which case the definition of Xu simplifies to
Xu(t) := X(t + u(mod 1)) − X(u) + X(0), t ∈ [0, 1]. (1)

In that case, it is more convenient to view the process X as given on the unit circle S1 using, say, the natural complex number
parametrisationX(e2π it) := X(t), t ∈ [0, 1).
Moreover, assuming integrability of X , observe that the cyclic exchangeability of increments now translates into the
invariance, with respect to rotations of the parametric set S1, of the distribution of the process {X0(z) : z ∈ S1

} given
by

X0(e2π it) := X(t) −

 1

0
X(s) ds, t ∈ [0, 1).

Indeed, note that, in view of (1) and the cyclic exchangeability property that Xu( · )
d
= X( · ), we have, for any u ∈ [0, 1), the

relationsX0e2π i( · +u (mod1))
= X( · + u(mod 1)) −

 1

0
X(s + u(mod 1)) ds

= Xu( · ) −

 1

0
Xu(s) ds

d
= X( · ) −

 1

0
X(s) ds = X0e2π i · .

Now the point t = 0 ceases to be special since, for any fixed a ∈ S1, the distribution of the ‘‘time’’ spent byX0 below the
levelX0(0) coincides with that of the time spent byX0 below the levelX0(a), and in view of the result of Theorem 1, that
distribution is uniform.

The objective of the present note is to demonstrate how the above result can, in a natural (and rather elementary) way,
be extended to the random fields setting where the parametric set T of the field {X(t) : t ∈ T } is endowed with a finite
measure µ. We show that, for a fixed a ∈ T , provided that a certain invariance property is satisfied, the µ-measure of the
subset of T on which the values of X do not exceed that of X(a), is also uniformly distributed. In a sense, this result is a
‘‘randomised’’ version of the well-known fact that, for a random variable ξ with continuous distribution function H , one has
H(ξ) ∼ U(0, 1).

2. The main result

Let (T , T , µ) be a measure space with a finite measure and {X(t) : t ∈ T } a real-valued measurable random field on a
probability space (Ω, F , P) with parameter set T . Without loss of generality, we will assume that µ(T ) = 1. Further, let

Fµ(X, x) := µ

t ∈ T : X(t) ≤ x


, x ∈ R,

be the µ-measure of the parameter values t for which X(t) was at or below the level x.
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