

Statistics & Probability Letters 77 (2007) 1098–1105

A note on absorption probabilities in one-dimensional random walk via complex-valued martingales

Dennis Gilliland, Shlomo Levental, Yimin Xiao*,1

Department of Statistics and Probability Michigan State University, A-413 Wells Hall, East Lansing, MI 48824, USA

Received 19 May 2005; received in revised form 1 December 2006; accepted 17 January 2007 Available online 20 February 2007

Abstract

Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables taking values in a finite set of integers, and let $S_n = S_{n-1} + X_n$ for $n \ge 1$ and $S_0 = 0$ be a random walk on \mathbb{Z} , the set of integers. By using the zeros, together with their multiplicities, of the rational function $f(x) = \mathbb{E}(x^X) - 1, x \in \mathbb{C}$, we characterize the space U of all complex-valued martingales of the form $\{g(S_n), n \ge 0\}$ for some function $g: \mathbb{Z} \to \mathbb{C}$. As an application we calculate the absorption probabilities of the random walk $\{S_n, n \ge 0\}$ by applying the optional stopping theorem simultaneously to a basis of the martingale space U. The advantage of our method over the classical approach via the Markov chain techniques (cf. Kemeny and Snell [1960. Finite Markov Chains. Van Nostrand, Princeton, NJ.]) is in the size of the matrix that is needed to be inverted. It is much smaller by our method. Some examples are presented. \mathbb{C} 2007 Elsevier B.V. All rights reserved.

MSC: 60G40; 60G42; 60G50

Keywords: Random walks; Martingales; Optional stopping theorem; Absorption probabilities

1. Introduction and main results

We deal here with a random walk $\{S_n, n \ge 0\}$ on \mathbb{Z} . Specifically,

$$S_n = S_{n-1} + X_n$$
 for $n \ge 1$ and $S_0 = 0$,

where $\{X, X_n, n \ge 1\}$ are i.i.d. random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a finite subset of \mathbb{Z} . We will consider three cases:

Case 1: Two-sided random walk:

$$p_i = \mathbb{P}(X = i), \quad i = 0, 1, \dots, a,$$

 $q_i = \mathbb{P}(X = -i), \quad i = 1, 2, \dots, b,$

where $p_a > 0$, $q_b > 0$ and $\sum_{i=0}^{a} p_i + \sum_{i=1}^{b} q_i = 1$.

E-mail addresses: gilliland@stt.msu.edu (D. Gilliland), levental@stt.msu.edu (S. Levental), xiao@stt.msu.edu (Y. Xiao).

URL: http://www.stt.msu.eduxiaoyimi

^{*}Corresponding author.

¹Research partially supported by NSF Grant DMS-0404729.

Case 2: Right-sided random walk:

$$p_i = \mathbb{P}(X = i), \quad i = 0, 1, \dots, a,$$

 $\sum_{i=0}^{a} p_i = 1 \text{ and } p_a > 0.$

Case 3: Left-sided random walk:

$$q_i = \mathbb{P}(X = -i), \quad i = 0, 1, \dots, b,$$

 $\sum_{i=0}^{b} q_i = 1 \quad \text{and} \quad q_b > 0.$

In all the cases, without loss of generality for our purpose, we assume that the integers in $I \equiv \{k \in \mathbb{Z} : \mathbb{P}(X = k) > 0\}$ do not have a common divisor larger than 1. (If not, then $S_n \in r\mathbb{Z}$ where r > 1 is the largest common divisor of I and we will replace X by X/r, etc.)

Let \mathbb{A} be the collection of all integers that $\{S_n, n \ge 0\}$ will ever visit with positive probability, i.e.,

$$\mathbb{A} = \left\{ m \in \mathbb{Z} : \sum_{n=0}^{\infty} \mathbb{P}(S_n = m) > 0 \right\}.$$

It follows from elementary results in number theory that in Cases 1, 2 and 3, respectively,

$$A = Z$$
, $Z^+ \supseteq A \supseteq \{m \geqslant m_0\}$ for some $m_0 \geqslant 0$ and $Z^- \supseteq A \supseteq \{m \leqslant m_1\}$ for some $m_1 \leqslant 0$,

where $\mathbb{Z}^+ = \{0, 1, 2, \ldots\}$ and $\mathbb{Z}^- = \{0, -1, -2, \ldots\}.$

In order to describe our results, let

$$f(x) = \mathbb{E}(x^X) - 1, \quad x \in \mathbb{C} \setminus \{0\},$$

where ${\mathbb C}$ denotes the field of complex numbers. Corresponding to the three cases, we have

$$f(x) = \sum_{i=0}^{a} p_i x^i - 1 + \sum_{i=1}^{b} q_i x^{-i},$$

$$f(x) = \sum_{i=0}^{a} p_i x^i - 1,$$

$$f(x) = \sum_{i=0}^{b} q_i x^{-i} - 1.$$

Let $\{x_j \text{ with multiplicity } k_j, j \in J\}$ denote the roots, over \mathbb{C} , of f(x) = 0. It follows that in the three cases, $\sum_{i \in J} k_j = a + b, a, b$, respectively.

Our first result characterizes U the space of all functions $g: \mathbb{A} \to \mathbb{C}$ such that $\{g(S_n), n \ge 0\}$ is a martingale with respect to the filtration $\{\mathscr{F}_n, n \ge 0\}$, where $\mathscr{F}_0 = \{\emptyset, \Omega\}$ and $\mathscr{F}_n \equiv \sigma(X_1, \dots, X_n)$ for all $n \ge 1$. When there is no confusion, we will also call U the space of all martingales of the form $\{g(S_n), n \ge 0\}$.

Proposition 1.1. In the three cases, U is a linear space over \mathbb{C} with dimension a+b, a and b, respectively. A basis for U is given by

$$\{g^{j,l}(\cdot): l = 0, 1, \dots, k_j - 1; j \in J\},$$
 (1.1)

where $g^{j,l}(\cdot): \mathbb{A} \to \mathbb{C}$ is the function defined by $g^{j,l}(m) = (x_j)^m m^l, \forall m \in \mathbb{A}$. Here and in the sequel, we use the convention $0^0 = 1$.

Download English Version:

https://daneshyari.com/en/article/1153637

Download Persian Version:

https://daneshyari.com/article/1153637

Daneshyari.com