

Statistics & Probability Letters 78 (2008) 249–253

www.elsevier.com/locate/stapro

The rank of a normally distributed matrix and positive definiteness of a noncentral Wishart distributed matrix

A.G.M. Steerneman*, Frederieke van Perlo-ten Kleij*,1

Department of Econometrics, University of Groningen, Landleven 5, P.O. Box 800, 9700 AV Groningen, The Netherlands

Received 12 December 2005; received in revised form 30 January 2007; accepted 23 May 2007 Available online 22 June 2007

Abstract

If $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, then S = X'X has the noncentral Wishart distribution $W'_k(n, \Sigma; \Lambda)$, where $\Lambda = M'M$. Here Σ is allowed to be singular. It is well known that if $\Lambda = 0$, then S has a (central) Wishart distribution and S is positive definite with probability 1 if and only if $n \geqslant k$ and Σ is positive definite. We show that if S has a noncentral Wishart distribution, then S is positive definite with probability 1 if and only if $n \geqslant k$ and $\Sigma + \Lambda$ is positive definite. This is a consequence of the main result that rank $X = \min(n, \operatorname{rank}(\Sigma + \Lambda))$ with probability 1. © 2007 Elsevier B.V. All rights reserved.

Keywords: Multivariate normal distribution; Singular covariance matrix; Rank; Noncentral Wishart; Positive definite

1. Introduction

It is well known that if $S \sim W_k(n, \Sigma)$, then S is positive definite with probability 1 if and only if $n \geqslant k$ and Σ is positive definite, see, for example, Muirhead (1982), Theorem 3.1.4 and Eaton (1983), Proposition 8.2. The proof of this result goes back to Dijkstra (1970). In case S follows a noncentral Wishart distribution, S is also positive definite if $n \geqslant k$, see Muirhead (1982), page 442 and Eaton (1983) states in page 317 that S is positive definite with probability 1 if and only if $n \geqslant k$ and Σ is positive definite. Eaton and Perlman (1973) study the non-singularity of (generalized) sample covariance matrices in great detail. To the best of our knowledge, the literature thus gives the following result: if Σ is positive definite, then S is positive definite with probability 1 if and only if $n \geqslant k$. We focus on noncentral singular Wishart distributions and drop the condition that Σ is positive definite. For the (central) singular Wishart distribution in particular, reference can be made to Uhlig (1994) and Srivastava (2003).

In Section 2 we start with some basic notation. In Section 3 we prove a theorem on the rank of $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, which is the basis for our main result on the positive definiteness of the noncentral Wishart matrix S. We present and prove this result in Section 4.

^{*}Corresponding author.

E-mail address: fvanperlo@hotmail.com (F. van Perlo-ten Kleij).

^{*}The main author of this paper, Ton Steerneman, passed away on September 28, 2005. He was a good friend and an inspiring promotor.

¹The author would like to thank Williem Schaafsma for our discussions and his comments.

2. Notation

If the random $k \times 1$ vector $X \sim \mathcal{N}_k(\mu, \Sigma)$, where $\mu \in \mathbb{R}^k$ and Σ is a positive semi-definite symmetric $k \times k$ matrix, then we say that X follows a multivariate normal distribution with mean μ and covariance matrix Σ . We allow Σ to be singular, which includes the possibility that X lies in an affine subspace with probability 1. In the above notation, the distribution of X is degenerated if $k < \operatorname{rank} \Sigma$.

When studying Wishart distributions, notational comfort is provided by using random matrices whose elements are multivariate normally distributed. The random $n \times k$ matrix X follows the $\mathcal{N}_{n \times k}(M, \Omega)$ distribution if

$$\operatorname{vec} X' \sim \mathcal{N}_{nk}(\operatorname{vec} M', \Omega),$$

where M = EX is an $n \times k$ matrix and Ω is the $nk \times nk$ covariance matrix of vec X'. If the rows X_1, \ldots, X_n of the random $n \times k$ matrix $X = (X_1, \ldots, X_n)'$ are independently distributed as $\mathcal{N}_k(\mu_i, \Sigma)$, then

$$X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma),$$

where $M = (\mu_1, ..., \mu_n)'$.

Definition 1. Let $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, then S = X'X has the noncentral Wishart distribution of dimension k, degrees of freedom n, covariance matrix Σ and noncentrality matrix $\Lambda = M'M$. This distribution is denoted by $W'_k(n, \Sigma; \Lambda)$. If M = 0, then S has the Wishart distribution, denoted by $W_k(n, \Sigma)$.

3. The rank of a normally distributed matrix

Frequently we assume that we have n independent k-variate normal observations assembled in a matrix X, denoted as $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, where Σ is positive semi-definite. Usually, the number of observations n will be larger than k, but we will not adopt this assumption, see also Srivastava (2003). If the rank of Σ is known, what can be said about the rank of X? The answer is given in the following theorem.

Theorem 1. If $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, then

 $\operatorname{rank} X = \min(n, \operatorname{rank}(\Sigma + M'M))$

with probability 1.

Before we prove Theorem 1 we want to emphasize the importance of this theorem. In the one-dimensional case, where $X \sim \mathcal{N}(\mu, \sigma^2)$, we know that $X \neq 0$ with probability 1 either if $\mu \neq 0$, or if $\sigma^2 > 0$. Or, stated otherwise, $X \neq 0$ with probability 1 if and only if $\sigma^2 + \mu^2 > 0$, which corresponds with Theorem 1. Theorem 1 shows that, even if rank $\Sigma < k$, the rank of X can still be equal to k, as long as the matrix of expectations M is such that $\operatorname{rank}(\Sigma + M'M) = k$, provided $n \geqslant k$.

The proof of this theorem is divided into a couple of lemmas. We use the notation of Section 2. In Lemma 1 we first consider the case rank $\Sigma = k$. The proof of this lemma can be found in Srivastava and Khatri (1979, p. 73).

Lemma 1. If $X \sim \mathcal{N}_{n \times k}(M, I_n \otimes \Sigma)$, where rank $\Sigma = k$, then rank $X = \min(n, k)$ with probability 1.

Lemma 2. Let $Y \sim \mathcal{N}_{n \times r}(M_1, I_n \otimes \Omega)$ with rank $\Omega = r$, let M_2 be an $n \times s$ matrix of rank s, and let $X = (Y, M_2)$. Then rank $X = \min(n, r + s)$ with probability 1.

Proof. Note that the case s = 0 is covered by Lemma 1. So, we may assume s > 0. Obviously $s \le n$.

(i) Assume $n \le r$. According to Lemma 1 we have

$$1 = P\{rank | Y = n\} = P\{rank(Y, M_2) = n\} = P\{rank | X = n\}.$$

(ii) Assume $r < n \le r + s$. Let $M_2 = (m_{r+1}, \dots, m_{r+s})$. Define Z = XA, where the $(r+s) \times (r+s)$ matrix

$$A = \begin{pmatrix} \Omega^{-1/2} & 0 \\ 0 & I_s \end{pmatrix}$$

Download English Version:

https://daneshyari.com/en/article/1153710

Download Persian Version:

https://daneshyari.com/article/1153710

<u>Daneshyari.com</u>