
Statistics & Probability Letters 78 (2008) 257–264

Missing data in time series: A note on the equivalence of the
dummy variable and the skipping approaches

Tommaso Proietti

Dipartimento S.E.F. e ME.Q, Via Columbia 2, 00133 Rome, Italy

Received 13 March 2006; received in revised form 22 February 2007; accepted 23 May 2007

Available online 16 June 2007

Abstract

This note shows the equivalence of the dummy variable approach and the skipping approach for the treatment of

missing observations in state space models. The equivalence holds when the coefficient of the dummy variable is considered

as a diffuse rather than a fixed effect. The equivalence concerns both likelihood inference and smoothed inferences.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A well-known result is that estimating a missing observation by skipping the Kalman filter (KF) updating
step is equivalent to introducing a dummy variable (additive outlier) in the measurement equation, filling the
missing value arbitrarily. This result (in different frameworks) appears in a number of papers: Sargan and
Drettakis (1974), Bruce and Martin (1989), Ljung (1993). A detailed discussion can be found in Fuller (1996,
Section 8.7). However, if the additive outlier is treated as a fixed effect, with zero covariance matrix, the
likelihood is defined differently and a correction has to be computed in the second case, see Gómez et al.
(1999). The correction factor is related to the determinantal term of the likelihood and depends in a simple
fashion from quantities computed under the model for the complete observations, requiring a single run of the
KF and smoothing filter.

To our knowledge, a proof the equivalence of the skipping approach and the dummy approach for the
definition of the likelihood and for smoothing is not available. This note aims at bridging the gap, providing a
simple proof that when the additive outlier is treated as diffuse, with arbitrarily large covariance matrix, the
correction to the likelihood takes place automatically. This is convenient, as no extra programming effort is
necessary once a programme handling diffuse initial conditions and regression effects has been implemented.

The equivalence is also carried forward to smoothed inferences, concerning the estimation of the states and
the disturbances. The derivation of analytical expressions for the influence of an observation on these
quantities, made in De Jong (1996), is greatly simplified in the dummy variable setup as they depend in a
simple fashion on the output of the KF and smoother run on intervention variables.
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The plan of the paper is the following: Section 2 introduces the dummy variable approach for stationary
state space models with no regression effects, under fixed and diffuse conditions, and derives the prediction
error decomposition form of the likelihood under the latter. In Section 3 we present the alternative strategy of
handling missing observations, known as the skipping approach, and prove that the likelihood for this model
is equivalent to the dummy variable one. In Section 4 the equivalence is extended to smoothed estimates of the
states and the disturbances, and measures of influence of an observations are given, which depends in a simple
way on the output of the KF and smoothing filter run on the intervention variable.

2. The Dummy variable approach

Let yt denote a vector stationary time series with N elements; the state space model is

yt ¼ Z tat þ G tet; t ¼ 1; 2; . . . ;T , (1)

atþ1 ¼ T tat þH tet; t ¼ 1; 2; . . . ;T , (2)

with a1�Nða1;s2P1Þ, where a1 and s2P1 denote the unconditional mean and covariance matrix of at, and
et�NIDð0; s2IÞ. The system matrices, Z t;G t;T t;H t, are functionally related to a vector of hyperparameters, h.

The Kalman filter (KF) is a well-known recursive algorithm for computing the minimum mean square
estimator of at and its mean square error (MSE) matrix conditional on Y t�1 ¼ fy1; y2; . . . ; yt�1g. Defining

at ¼ EðatjY t�1Þ; MSEðatÞ ¼ s2Pt ¼ E½ðat � atÞðat � atÞ
0
jY t�1�,

the filter consists of the following recursions:

mt ¼ yt � Z tat; F t ¼ Z tPtZ
0
t þ G tG

0
t,

qt ¼ qt�1 þ m0tF
�1
t mt; K t ¼ ðT tPtZ

0
t þH tG

0
tÞF
�1
t ,

atþ1 ¼ T tat þ K tmt; Ptþ1 ¼ TtPtL
0
t þH tJ

0
t (3)

with Lt ¼ T t � K tZ t and J t ¼ H t � K tG t; mt ¼ yt � EðytjY t�1Þ are the filter innovations, with MSE matrix
s2F t. The filter is started off with a1 ¼ 0, P1 ¼ H0H 00 and q0 ¼ 0. The log-likelihood for the model is, apart
from a constant term,

Lðy1; . . . ; yT ; hÞ ¼ �
1

2
NT ln s2 þ

XT

t¼1

ln jF tj þ s�2qT

" #
, (4)

where qT ¼
PT

t¼1m
0
tF
�1
t mt.

Suppose that an intervention is included at t ¼ i so that the measurement equation becomes

yt ¼ Z tat þ I tðiÞdþ G tet, (5)

where I tðiÞ is an indicator variable taking value 1 for t ¼ i and 0 elsewhere. For its statistical treatment, the KF
(3) at t ¼ i is augmented by the following recursions:

Vþt ¼ I tðiÞI � Z tA
þ
t ,

Aþtþ1 ¼ T tA
þ
t þ K tV

þ
t ¼ K iI tðiÞ þ LtA

þ
t ,

Sþt ¼ Sþt�1 þ V
0þ
t F�1t Vþt ,

sþt ¼ sþt�1 þ V
0
þ

t F�1t mt, (6)

for t ¼ i; . . . ;T with starting conditions: Aþi ¼ 0, Sþi�1 ¼ 0 and sþi�1 ¼ 0. This amounts to apply the KF to the
intervention signature I tðiÞI .
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