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Abstract

In many statistics and reliability theory models the object of interest is a random variable obtained from others by

minimum and maximum operations. As a generalization, a random variable Y defined as a lattice polynomial of random

arguments was introduced in Marichal [2006. Cumulative distribution function and moments of lattice polynomials.

Statist. Probab. Lett. 76(12), 1273–1279] and studied in case of independent identically distributed arguments. Here, the

cumulative distribution function of Y (in particular, order statistic) is studied for generally dependent arguments and

special cases. A relation (presented in [Marichal, 2006. Cumulative distribution function and moments of lattice

polynomials. Statist. Probab. Lett. 76(12), 1273–1279]) between Y and order statistics is proved to hold if and only if the

arguments possess ‘‘cardinality symmetry’’.
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1. Introduction

Random variables constructed from random arguments using minimum and maximum operations
appear naturally in such applications as, for example, the lifetime of a control system or an order statistic
of a random sample. More generally, in Marichal (2006), lattice polynomials were introduced as a way to
aggregate random arguments. Starting from the seminal work of Birkhoff (1967), lattice polynomials
have been given much attention in the literature. In particular, order statistics can be presented as (symmetric)
lattice polynomials (see Ovchinnikov, 1998). That connection opens a way to explore order statistics
under assumptions more general than so far (see, e.g., David and Nagaraja, 2003, for an extensive review of
current results for order statistics—all under the assumption that the variates are either independent or
exchangeable).

In Marichal (2006) the cumulative distribution function (c.d.f.) was obtained of a random variable Y

defined by a lattice polynomial p of independent random arguments (c.d.f. of the kth order statistic, in
particular). In the case of independent identically distributed (i.i.d.) arguments, the c.d.f. of Y was expressed as
a linear combination of c.d.f.s of the order statistics with constant coefficients determined by the polynomial p.
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Both in reliability theory and statistical applications, the assumption of independent arguments is, in many
situations, unrealistic. In this paper, a new approach is developed in order to obtain results similar to Marichal
(2006) for generally dependent arguments.

The starting point is the definition of a lattice polynomial (as given in Marichal, 2006):
Given a finite collection of variables x1; . . . ;xn, that are elements of a general lattice, a lattice polynomial in

those variables is defined as follows:

Definition 1. (1) The variables themselves are lattice polynomials;
(2) if p and q are lattice polynomials, then so are also p ^ q and p _ q;
(3) every lattice polynomial is formed by finitely many applications of rules (1) and (2).

Treating R as a lattice where ^ and _ present as min and max, a random variable Y can be obtained as a
lattice polynomial p of random variables X 1; . . . ;X n:

Y ¼ pðX 1; . . . ;X nÞ.

The approach developed here is suggested by the following interpretation of Y:
Consider a control system consisting of units with random ‘‘lifetimes’’ X i (possibly, same for different

units). For units connected in series, the lifetime of that segment is the minimum of their lifetimes, for parallel
connections the lifetime is the maximum. Connecting the units into a system according to the lattice
polynomial p, Y can be interpreted as the lifetime of the entire system. In those terms, Y4y is the event that by
the time y the system is still on, which in turn, is determined by the set of units that are on at the time y, that is,
by the indicators of events X i4y.

Now, the key fact here is that to analyze the system the joint probability distribution is needed of those
indicator variables synchronized at the same time y, not of the entire set X 1; . . . ;X n. Since the indicator
variables are discrete (in fact, f0; 1g valued), probability generating functions (p.g.f.) are used to represent the
probability distributions.

In Section 2, the main results are presented on the c.d.f. of Y (in particular, order statistics) when the
arguments are generally dependent. For the case of independent arguments the general formulas yield the
same results as in Marichal (2006).

In Section 3, we specify the main results to the case where the arguments possess a ‘‘cardinality symmetry’’
property which, we prove, is necessary and sufficient for the relation between the c.d.f.s of and order statistics that
was presented in Marichal (2006) for i.i.d. arguments. (As an example, some results of Marichal (2006) for i.i.d.
arguments are reproduced.) Compared to the ‘‘exchangeable arguments’’ condition, ‘‘cardinality symmetry’’
applies to a wider class of cases where only the synchronous indicator variables need to be exchangeable.

2. The cumulative distribution function in the general case

In view of the above analogy with the lifetime of a unit, for a real-valued random variable X we introduce a
supplementary indicator variable

w ¼ IndðX4xÞ.

For a set of variables X 1; . . . ;X n, we denote the set of indices ½n� ¼ f1; . . . ; ng, and consider a vector of
(synchronous) indicator variables

~wðxÞ ¼ ðw1ðxÞ; . . . ; wnðxÞÞ,

where

wiðxÞ ¼ IndðX i4xÞ; i 2 ½n�.

Let Y ¼ pðX 1; . . . ;X nÞ and denote wY ðyÞ ¼ IndðY4yÞ. The analogy with a control system leads to the
following theorem.

Theorem 1.

wY ðyÞ ¼ pðw1ðyÞ; . . . ; wnðyÞÞ. (1)
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