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a b s t r a c t

Using the empirical characteristic function, a Cramér–von Mises
test for reflected symmetry about an unspecified point is derived
for multivariate distributions. The test statistic is based on an
empirical process for which the weak convergence is established.
The null properties of the test are studied as well as its power
and local power. Estimators for the unknown symmetric point
are previously proposed. Their consistency and asymptotical
normality are proved by studying the weak convergence of some
multidimensional empirical process. A simulation experiment
shows that the estimators of the symmetric point are good, and
that the test performs well on the examples tested. The new test
is compared to the one derived in [N. Henze, B. Klar, S.G. Meintanis,
Invariant tests for symmetry about an unspecified point based on
empirical characteristic function, J. Multivariate. Anal. 87 (2003)
275–297].
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1. Introduction

In some areas such as economy and finance, testing for symmetry of a distribution may be very
important (see, e.g., [1,5,14,6,27,35]). The major part of the considerable literature concerned with
this subject is devoted to the univariate case. For a review, see for example [2,4,10–13,15,32,3,33].
The multivariate case has received much attention these last years. In this setting, there are generally
two types of symmetry which bothmatch in the univariate case. Themost popular one is the elliptical
(or spherical) symmetry. Papers dealingwith it are, among others, [26,8,28,7,16,29,35,17]. The second
type of symmetry is the reflected (or diagonal) symmetry which is involved in this paper. Some
relevant works are [18,22,36,24].
The test proposed in [18] is of Cramér–von Mises type. It is based on observations centered at the

known symmetric point. The one in [22] is a Kolmogorov–Smirnov with observations centered at an
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estimator of the unknown symmetric point. Both papers suffer the fact that the computation of the
tails of the limiting distribution of the test statistic is intractable. Neuhaus and Zhu [36] proposed
for these two tests, their so-called permutation counterparts. Although they lead to conditional
distribution-free statistics, they need a Monte Carlo procedure for determining the critical value of
the test. But it is well known that such procedures can be time consuming and costly. Henze, Klar and
Meintanis [24] derived the same type of test with different techniques.
Let X be a d-dimensional random vector defined on some probability space (Ω,A, P) with

distribution law PX . Let S be the collection of all reflected symmetric distribution laws. Formally
speaking, testing the reflected symmetry of X is tantamount to testing H0 : PX ∈ S against
H1 : PX 6∈ S. It is clear that PX ∈ S means PX = Pµ for some Pµ ∈ S, where µ ∈ Rd is the
symmetric point. As in [36,24], we propose for this testing problem a Cramér–von Mises type test.
In our approach, the observations are centered at a consistent and asymptotical normal estimator of
the unknown symmetric point, and the asymptotic distribution of our test statistic under H0 is that
of a weighted sum of independent χ2(1) random variables. The derivation of this result makes use of
the principal component decomposition of a non-stationary Gaussian process. The resulting test has
some advantages over the aforementioned ones. Indeed, theoretically, the assumptions needed are
weaker and the convergence results established are more general. Practically, the new test is more
flexible and is easier to implement.
In Section 2, we derive two classes of estimators for the symmetric point µ. Their consistency and

asymptotical normality are deduced from the weak convergence of some d-dimensional empirical
process. In Section 3, we derive our test statistic and study its behavior under the null hypothesis by
establishing a functional central limit theorem for some empirical process. In Section 4, the power
of the test is investigated under a general alternative H1. It is next studied under a sequence of
local alternatives Hn1 approaching H0 from a fixed direction. In Section 5, a simulation experiment is
presented and discussed. There, a comparison study is done with the test derived in [24]. The proofs
of the results are given in the last section.

2. Estimating the symmetric point

In this section, we aim to provide consistent and asymptotical normal estimators which can be
more easier to compute than those in Heathcote, Rachev and Cheng [22] and Koutrouvelis [32].
For t ∈ Rd, denote by t ′ the transpose of t . Let t = (t1, . . . , td)′, s = (s1, . . . , sd)′ ∈ Rd; t ′s stands

for the Euclidean scalar product of t and s, namely t ′s = t1s1 + · · · + tdsd, and ‖t‖ = (t ′t)1/2 =
(t21 + · · · + t

2
d )
1/2 is the Euclidean norm of t . We now recall that a d-dimensional random variable X

is reflectively symmetric about µ if the random vectors X −µ and µ− X have the same distribution.
More precisely, X is reflectively symmetric about µ if and only if

E{sin[t ′(X − µ)]} =
∫

Rd
sin[t ′(x− µ)]dPµ(x) = 0, t ∈ Rd. (1)

Denote the characteristic function of X by

ϕ(t) = E(e(it
′X)) = E([cos(t ′X)])+ iE([sin(t ′X)]) = ϕ1(t)+ iϕ2(t), t ∈ Rd. (2)

Recall that, i2 = −1, and that for all t ∈ Rd, |ϕ(t)|2 = ϕ(t)ϕ(t) = ϕ21(t)+ ϕ
2
2(t). LetΞ be a compact

subset ofRd onwhich ϕ1(t) (hence |ϕ(t)|) does not vanish. A such compact subset can be for example
the closed ball of radius 0 < r < 1, B(0, r) = {u ∈ Rd : ‖u‖ ≤ r}. Let C[Ξ → Rd] be the set of
continuous functions defined on Ξ with values in Rd and C(Ξ) the set of all real-valued continuous
functions defined onΞ , with the usual sup-norm ‖x‖∞ = supt∈Ξ |x(t)|.
Let X1, . . . , Xn be n independent copies of X . Define the following d-dimensional random and non-

random functions

βn(t) =

n∑
k=1

n∑
j=1
Xk cos[t ′(Xk − Xj)]

n∑
k=1

n∑
j=1
cos[t ′(Xk − Xj)]

, t ∈ Ξ (3)
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