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a b s t r a c t

In this paper the author considers an autoregressive process where the parameters of the
process are unknown and try to obtain pivots for predicting future observations. If we do a
probabilistic prediction with the estimated model, where the parameters are estimated
by a sample of size n, we introduce an error of order n−1 in the coverage probabilities
of the prediction intervals. However we can reduce the order of the error if we calibrate
adequately the estimated prediction bounds. The solution obtained can be expressed in
terms of an approximate predictive pivot.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The general setting is of prediction of an absolutely continuous (a.c.) random variable Z based on the observation
y = (y1, y2, . . . , yn) corresponding to a random vector Y = (Y1, Y2, . . . , Yn), where the laws of Y and Z depend on a common
and unknown parameter θ ∈ Θ ⊂ Rd. A prediction statement about Z is often given by prediction limits, i.e. real functions
Kα(·) such that

Pθ{Z ≤ Kα(Y)} = α,

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is usually called coverage probability and it is calculated
with respect to the joint density of Z and Y. Sometimes the existence of exact (predictive) pivotal quantities, that is of
functions of Z and Y whose distribution does not depend on θ, permit us to find an exact solution. But this is the exception.
Here we look for approximate prediction limits and predictive pivots. An approximate solution is to take Kα(Y) = qα(θ̂),
where qα(θ) is the α-quantile of the conditional distribution of Z given Y = y, that we also assume absolutely continuous,
and θ̂ is an efficient estimator of θ. Note that, if we denote the conditional density of Z given Y = y, g(z; θ|y), then qα(θ̂)

will be the α-quantile of the so-called estimative density g(z; θ̂|y). However these predictions limits are usually imprecise,
having coverage error of order O(n−1), that is

Pθ{Z ≤ qα(θ̂)} = α+ O(n−1).

This is a well known result; indeed Barndorff-Nielsen and Cox (1996) suggest a way to correct these quantiles obtaining
prediction limits with a coverage error of order o(n−1). The solution can be expressed in terms of a predictive density whose
quantiles are precisely these predictions bounds. We will apply this method to the case where Y = (Y1, Y2, . . . , Yn) is such
that

Yk+1 − µ =
p∑

j=1
φj(Yk−j+1 − µ)+ εk+1, k ∈ Z,

E-mail address: jmcorcuera@ub.edu.

0167-7152/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2008.03.010

http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
mailto:jmcorcuera@ub.edu
http://dx.doi.org/10.1016/j.spl.2008.03.010


2686 J.M. Corcuera / Statistics and Probability Letters 78 (2008) 2685–2691

where the innovation εk+1 ∼ N(0,σ2), φ1, . . . ,φp are the coefficients of a stationary autoregressive process of order p, AR(p)
for short, and where Y0, Y−1, . . . , Y−p+1 are assumed to be known and fixed. All the parameters, µ,φ1, . . . ,φp and σ are
unknown and Z = Yn+1,

The paper is organized in the following way. In the next section we give the details of the Barndorff-Nielsen and Cox
method. Then we solve the AR(p) case. Some simulations are made in order to study how the corrections work.

2. The method

In this section we explain, in a concise and heuristic manner, the method of Barndorff-Nielsen and Cox (1996) to modify
the estimative density g(z; θ̂|y) to get better, asymptotically, prediction intervals or limits and how to obtain approximate
predictive pivots. For more details, we refer the reader to that paper.

When we use g(z; θ̂|y) instead of g(z; θ|y), we are introducing the error in the estimation of θ; we can correct this effect
if we take into account the incertitude in θ̂ about θ. We know, by the conditionality principle that, when estimating θ, we
should consider the conditional distribution of θ̂ given A(Y) = a, where A is an ancillary statistics (distribution free of θ and
such that (θ̂, A) is a minimal sufficient statistics for θ). Then, if we have a minimal predictive sufficient reduction of the data,
W, we take W instead of Y , and if there is a decomposition W = (θ̂, A) where A has a distribution free of θ, or approximately
free (here we use the continuity principle), we shall suppose A is fixed when we study long-run properties.

We shall omit A in the notation, whenever this does not produce confusion. Consider now that the joint law of (Z, Y) is
absolutely continuous, with respect to the Lebesgue measure. Then, to predict Z we look for certain functions K(α)(θ̂) such
that,

Pθ{Z ≤ K(α)(θ̂)|A = a} = α ∀θ ∈ Θ,α ∈ (0, 1), (1)

up to order op(n−1).
Let G(z; θ|θ̂) = Pθ{Z ≤ z|W = (θ̂, a)}, that is the distribution function of Z given Y = y (note that W is transitive) considered

as function of z, θ, θ̂ and a; and g(z; θ|θ̂) the corresponding density function. Note that Pθ{Z ≤ z|A = a} = Eθ(G(z; θ|θ̂)|A = a).
Let q(α)(θ) be such that

G(q(α)(θ); θ|θ) = α, ∀θ ∈ Θ.

Suppose we can write

Eθ(G(q(α)(θ̂); θ|θ̂)) = α+ Q(q(α)(θ), θ)+ op(n
−1),

where Q(q(α)(θ), θ) = b(q(α)(θ),θ)
n

, and b(·, ·) is a smooth function, then

∫ q(α)(θ̂)− Q(q(α)(θ),θ)

g(q(α)(θ̂);θ|θ̂)

−∞

g(z; θ|θ̂)dz = G(q(α)(θ̂); θ|θ̂)−

∫ q(α)(θ̂)

q(α)(θ̂)− Q(q(α)(θ),θ)

g(q(α)(θ̂);θ|θ̂)

g(z; θ|θ̂)dz

= G(q(α)(θ̂); θ|θ̂)− Q(q(α)(θ), θ)+ op(n
−1),

where we assume that, conditioning on A = a, θ̂− θ = Op(n−1/2). Then by taking the expectation with respect to θ̂we obtain
that

K(α)(θ̂) = q(α)(θ̂)−
Q(q(α)(θ), θ)

g(q(α)(θ̂); θ|θ̂)
= q(α)(θ̂)−

Q(q(α)(θ̂), θ̂)

g(q(α)(θ̂); θ̂|θ̂)
+ op(n

−1),

is a solution of (1). Also we could get a predictive density, denoted by p̂(z|y), with these quantiles up to order n−1, that is∫ K(α)(θ̂)

−∞

p̂(z|y)dz = α+ op(n
−1).

To obtain it, consider the identity∫ q(α)(θ̂)

−∞

g(u; θ̂|θ̂)du = α,

by doing the change of variable u = z+ Q(z;θ̂)

g(z;θ̂|θ̂)
we obtain that∫ z0

−∞

(1+ ∂z r̂)g(z+ r̂; θ̂|θ̂)dz = α,

where

r̂ =
Q(z; θ̂)

g(z; θ̂|θ̂)
. and z0 = K(α)(θ̂)+ op(n

−1). (2)
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