Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on the complete convergence of moving average processes

Soo Hak Sung

Department of Applied Mathematics, Pai Chai University, Taejon 302-735, South Korea

ARTICLE INFO

ABSTRACT

not completely correct.

Article history: Received 18 August 2007 Received in revised form 1 March 2009 Accepted 2 March 2009 Available online 9 March 2009

MSC: 60F15 60G50

1. Introduction

Assume that $\{Y_i, -\infty < i < \infty\}$ is a doubly infinite sequence of identically distributed random variables. Let $\{a_i, -\infty < i < \infty\}$ be an absolutely summable sequence of real numbers and

Let $\{Y_i, -\infty < i < \infty\}$ be a doubly infinite sequence of i.i.d. random variables with $E|Y_1| < \infty, \{a_i, -\infty < i < \infty\}$ an absolutely summable sequence of real numbers. It is still an open question whether $\sum_{n=1}^{\infty} \frac{1}{n} P(|\sum_{i=-\infty}^{\infty} \sum_{k=1}^{n} a_{i+k}(Y_i - EY_i)| > n\epsilon) < \infty$ for all $\epsilon > 0$. In this paper, we show that the answer to this question is false by giving a

counterexample. This also shows that some basic results in the literature on this topic are

$$X_n = \sum_{i=-\infty}^{\infty} a_{i+n} Y_i, \quad n \ge 1$$

be the moving average process based on the sequence $\{Y_i\}$.

Under the independence assumption of the base sequence $\{Y_i\}$, many limiting results have been obtained for the moving average process $\{X_n, n \ge 1\}$. For example, Ibragimov (1962) has established the central limit theorem, Burton and Dehling (1990) have obtained a large deviation principle, and Li et al. (1992) have obtained the complete convergence. Under different dependence assumptions of the base sequence $\{Y_i\}$, Zhang (1996), Baek et al. (2003), and Li and Zhang (2004) have obtained the complete convergence results.

For a sequence $\{X_n, n \ge 1\}$ of i.i.d. random variables, Baum and Katz (1965) proved the following well-known complete convergence theorem.

Theorem A. Suppose that $\{X_n, n \ge 1\}$ is a sequence of i.i.d. random variables. Then $EX_1 = 0$ and $E|X_1|^{rp} < \infty(1 \le p < 2, r \ge 1)$ if and only if $\sum_{n=1}^{\infty} n^{r-2}P(|\sum_{i=1}^{n} X_i| > n^{1/p}\epsilon) < \infty$ for all $\epsilon > 0$.

The case r = 2 and p = 1 of the above theorem was proved by Hsu and Robbins (1947) and Erdös (1949). Spitzer (1956) proved the above theorem for the case r = 1 and p = 1.

Li et al. (1992) generalized Hsu–Robbins–Erdös result for the moving average process based on a sequence of i.i.d. random variables { Y_i , $-\infty < i < \infty$ }. Zhang (1996) and Baek et al. (2003) generalized the result of Baum and Katz (1965) for the moving average process based on a sequence of dependent random variables. If we omit the insignificant condition (slowly

© 2009 Elsevier B.V. All rights reserved.

E-mail address: sungsh@pcu.ac.kr.

^{0167-7152/\$ –} see front matter s 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2009.03.001

varying function), the result of Zhang (1996) can be formulated as follows:

Theorem B. Let $\{Y_i, -\infty < i < \infty\}$ be a sequence of identically distributed and ϕ -mixing random variables with $\sum_{n=1}^{\infty} \phi^{1/2}(n) < \infty$. Suppose that $\{X_n, n \ge 1\}$ is the moving average process based on the sequence $\{Y_i\}$. If $EY_1 = 0$ and $E|Y_1|^{rp} < \infty$ for some $1 \le p < 2$ and $r \ge 1$, then

$$\sum_{n=1}^{\infty} n^{r-2} P\left(\left| \sum_{k=1}^{n} X_k \right| > n^{1/p} \epsilon \right) < \infty \quad \text{for all } \epsilon > 0.$$

Baek et al. (2003) proved Theorem B for the negatively associated random variables. However, the proofs of Zhang (1996) and Baek et al. (2003) are mistakenly based on the fact that

$$\sum_{i=1}^{n} i^{r-1-1/p} = O(n^{r-1/p}).$$
⁽¹⁾

Note that (1) holds only for r - 1/p > 0. From the conditions $1 \le p < 2$ and $r \ge 1$, the proofs of Zhang (1996) and Baek et al. (2003) are valid except for the case r = 1 and p = 1. Thus it is natural to ask whether the result of Spitzer (1956) holds for the moving average process.

Question. If $\{Y_i, -\infty < i < \infty\}$ is a sequence of i.i.d. random variables with $E|Y_1| < \infty$, and $\{a_i, -\infty < i < \infty\}$ is an absolutely summable sequence of real numbers, then $\sum_{n=1}^{\infty} \frac{1}{n} P(|\sum_{i=-\infty}^{\infty} \sum_{k=1}^{n} a_{i+k}(Y_i - EY_i)| > n\epsilon) < \infty$ for all $\epsilon > 0$?

In this paper, we show that the answer to the question is false by giving a counterexample. From this result, we have that Theorems of Zhang (1996) and Baek et al. (2003) for the case r = 1 and p = 1 are not true.

2. A counterexample

In this section, we give a counterexample to the question. To do this, we need the following lemmas. Lemma 1 is due to Etemadi (1985).

Lemma 1. If X_1, \ldots, X_n are independent random variables, then for any t > 0

$$\max_{1 \le l \le n} P\left(\left|\sum_{i=1}^{l} X_{i}\right| > t\right) \ge \frac{1}{4} \sum_{i=1}^{n} P\left(|X_{i}| > 8t\right) \left\{ 1 - P\left(\max_{1 \le l \le n} \left|\sum_{i=1}^{l} X_{i}\right| > 4t\right) \right\}.$$

Lemma 2. Let $\{Y_i, -\infty < i < \infty\}$ be a sequence of i.i.d. non-negative random variables with $EY_1 < \infty$, $\{a_i, -\infty < i < \infty\}$ a summable sequence of non-negative real numbers. Then there exist positive constants C and D such that

$$\sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=-\infty}^{\infty} P\left(\sum_{k=1}^{n} a_{i+k} Y_i > \frac{n}{2}\right) \le C \sum_{n=1}^{\infty} \frac{1}{n} P\left(\left|\sum_{i=-\infty}^{\infty} \sum_{k=1}^{n} a_{i+k} (Y_i - EY_i)\right| > \frac{n}{64}\right) + DEY_1$$

Proof. Set $\theta^{-1} = \sum_{-\infty}^{\infty} a_i$ and $a_{ni} = \sum_{k=1}^{n} a_{i+k}$. Then it is obvious that $a_{ni} \le 1/\theta$ and $\sum_{i=-\infty}^{\infty} a_{ni} \le n/\theta$. By Lemma 1, we have that

$$\sum_{i=-\infty}^{\infty} P\left(a_{ni}Y_i > \frac{n}{2}\right) = \sum_{i=-\infty}^{\infty} P\left(a_{ni}Y_i I(Y_i > \theta n/2) > \frac{n}{2}\right) \le \frac{4P\left(\sum_{i=-\infty}^{\infty} a_{ni}Y_i I(Y_i > \theta n/2) > \frac{n}{16}\right)}{1 - P\left(\sum_{i=-\infty}^{\infty} a_{ni}Y_i I(Y_i > \theta n/2) > \frac{n}{4}\right)}.$$
(2)

We also have by Markov's inequality that

$$P\left(\sum_{i=-\infty}^{\infty} a_{ni}Y_{i}I(Y_{i} > \theta n/2) > \frac{n}{4}\right) \leq \frac{4}{n}\sum_{i=-\infty}^{\infty} a_{ni}EY_{1}I(Y_{1} > \theta n/2)$$
$$\leq \frac{4}{\theta}EY_{1}I(Y_{1} > \theta n/2) \to 0$$

as $n \to \infty$. Hence there exists a positive integer N such that $\sum_{i=-\infty}^{\infty} a_{ni} EY_1 I(Y_1 > \theta n/2) \le n/32$ and $P(\sum_{i=-\infty}^{\infty} a_{ni} Y_i I(Y_i > \theta n/2) > \frac{n}{4}) \le 1/8$ if $n \ge N$. It follows that for $n \ge N$

$$1 - P\left(\sum_{i=-\infty}^{\infty} a_{ni}Y_i l(Y_i > \theta n/2) > \frac{n}{4}\right) \ge \frac{7}{8}$$
(3)

Download English Version:

https://daneshyari.com/en/article/1154143

Download Persian Version:

https://daneshyari.com/article/1154143

Daneshyari.com