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a b s t r a c t

We study a dynamical system generalizing continuous iterated function systems and
stochastic differential equations disturbed by Poisson noise. The aim of this paper is to
study stochastic processes whose paths follow deterministic dynamics between random
times, jump times, at which they change their position randomly. Continuous random dy-
namical systems can be used as a description of many physical and biological phenomena.
We prove the existence of an exponentially attractive invariantmeasure and the strong law
of large numbers for continuous random dynamical systems. We illustrate the usefulness
of our criteria for asymptotic stability by considering a general d-dimensional model for
the intracellular biochemistry of a generic cell with a probabilistic division hypothesis (see
Lasota and Mackey, 1999).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the present paper we are concernedwith the problem of proving the existence of an exponentially attractive invariant
measure and the law of large numbers (LLN) for continuous random dynamical systems.

Continuous randomdynamical systems (Horbacz, 2013) take into consideration some very important andwidely studied
cases, namely dynamical systems generated by learning systems (Barnsley et al., 1988; Iosifescu and Theodorescu, 1969;
Karlin, 1953; Lasota and Yorke, 1994), random dynamical systems (Horbacz, 2008), continuous iterated function systems
(Horbacz and Szarek, 2001), iterated function systems with an infinite family of transformations (Lasota and Mackey, 1999;
Tyrcha, 1988; Tyson and Hannsgen, 1988), Poisson driven stochastic differential equations (Horbacz, 2006; Lasota and
Traple, 2003), random evolutions (Griego and Hersh, 1969; Pinsky, 1991) and irreducible Markov systems (Werner, 2005).
So called irreducible Markov systems introduced by Werner are used for the computer modelling of different stochastic
processes.

A large class of applications of such models, both in physics and biology, is worth mentioning here: the growth of the
size of structural populations, the motion of relativistic particles, both fermions and bosons (see Frisch, 1986, Keller, 1964),
the generalized stochastic process introduced in the recent model of gene expression by Lipniacki et al. (2006).

On the other hand, it should be noted that most Markov chains may be represented by continuous iterated function
systems. This turned out to be a very useful tool in the theory of cell cycles, for example: in a general d-dimensional model
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for the intracellular biochemistry of a generic cell with a probabilistic division hypothesis (see Lasota andMackey, 1999). See
also Tyson and Hannsgen (1988) or Murray and Hunt (1993) to get more details on the subject. Lasota and Mackey proved
only stability, while we managed to evaluate rate of convergence, bringing some information important from biological
point of view. This stability means that the cell division process leads to a population, which is unique with respect to cell
function and structure, independently of the way in which the cells are prepared in the beginning. Hille et al. (in press)
proposed the generalization of the model of the cell division and assumed the existence of a unique invariant measure in it.

The aim of this paper is to study stochastic processeswhose paths follow deterministic dynamics between random times,
jump times, at which they change their position randomly. Hence, we analyse stochastic processes in which randomness
appears at times t0 < t1 < t2 < · · ·. We assume that a point x0 ∈ Y moves according to one of the dynamical systems
Si : R+ × Y → Y from some set {S1, . . . , SN}. The motion of the process is governed by the equation X(t) = Si(t, x0) until
the first jump time t1. Then, we choose a transformation q : Y × Θ → Y from a family {q(·, s) : s ∈ Θ = [0, T ]} and define
x1 = q(Si(t1, x0), s). The process restarts from that new point x1 and continues as before. This gives the stochastic process
{X(t)}t≥0 with jump times {t1, t2, . . .} and post jump positions {x1, x2, . . .}. The probability determining the frequency with
which the dynamical systems Si are chosen is described by a matrix of probabilities πij : Y → [0, 1]. The maps q(·, s) are
randomly chosen with place dependent absolutely continuous distribution.

We are interested in the evolution of distributions of these random dynamical systems. We formulate criteria for
the existence of an exponentially attractive invariant measure and the strong law of large numbers for such systems.
Our results are based on an exponential convergence theorem due to Ślȩczka and Kapica (see Kapica and Ślȩczka,
submitted for publication) and a version of the law of large numbers due to Shirikyan (see Shirikyan, 2003).

The results of this paper are related to previously published papers (Horbacz, 2013; Horbacz and Ślȩczka, 2016;
Wojewódka, 2013). The simplest case when Θ is equal to the finite set {1, . . . , K} and qs : s ∈ Θ are randomly chosen with
discrete distribution is considered in Horbacz and Ślȩczka (2016). In Horbacz (2013) we formulate criteria only for stability
for continuous random dynamical systems. Exponential rate of convergence for continuous iterated function systems is
considered inWojewódka (2013). Our result generalized Theorem 2 fromWojewódka (2013). Additionally, the assumption
(V) of Theorem 2, Wojewódka (2013) is restrictive if we want to apply our model in biology (see Powell, 1958).

The law of large numbers, which we study in this note, was also considered in many papers. Komorowski et al. (2010)
obtained the weak law of large numbers for the passive tracer model in a compressible environment and Walczuk studied
Markov processes with the transfer operator having spectral gap in the Wasserstein metric and proved the LLN in the non-
stationary case (Walczuk, 2008).

2. Notation and basic definitions

Let (X, d) be a Polish space, i.e. a complete and separable metric space and denote byBX the σ -algebra of Borel subsets of
X . By B(X)we denote the space of bounded Borel-measurable functions equippedwith the supremumnorm, C(X) stands for
the subspace of bounded continuous functions. LetM(X) andM1(X) be the sets of Borelmeasures on X such thatµ(X) < ∞

for µ ∈ M(X) and µ(X) = 1 for µ ∈ M1(X). The elements of M1(X) are called probability measures. The elements of M(X)
for which µ(X) ≤ 1 are called subprobability measures. By supp µ we denote the support of the measure µ. We also define

M1
1(X) =


µ ∈ M1(X) :


X
d(x, x∗)µ(dx) < ∞


,

where x∗ ∈ X is fixed. By the triangle inequality this family is independent of the choice of x∗.
To simplify notation, we write

⟨f , µ⟩ =


X
f (x)µ(dx) forf ∈ B(X), µ ∈ M(X).

The space M1(X) is equipped with the Fourtet–Mourier metric:

∥µ1 − µ2∥FM = sup{|⟨f , µ1 − µ2⟩| : f ∈ F },

where F = {f ∈ C(X) : |f (x) − f (y)| ≤ d(x, y) and |f (x)| ≤ 1 for x, y ∈ X}. An operator P : M(X) → M(X) is called a
Markov operator if

P(λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 forλ1, λ2 ≥ 0, µ1, µ2 ∈ M(X),

Pµ(X) = µ(X) for µ ∈ M(X).

A Markov operator P for which there exists a linear operator U : B(X) → B(X) such that

⟨Uf , µ⟩ = ⟨f , Pµ⟩ for f ∈ B(X), µ ∈ M(X)

is called a regular operator. Furthermore, a regular Markov operator is Feller if U(C(X)) ⊂ C(X).
We say that µ∗ ∈ M1(X) is invariant for P if Pµ∗ = µ∗. An invariant measure µ∗ is attractive if

lim
n→∞

∥Pnµ − µ∗∥FM = 0 forµ ∈ M1(X).
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