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a b s t r a c t

Additive deformations of statistical systems arise in various areas of physics. Classical
central limit theory is then no longer applicable, even when standard independence
assumptions are preserved. This paper investigates ways in which deformed algebraic
operations lead to distinctive central limit theory. We establish some general central
limit results that are applicable to a range of examples arising in nonextensive statistical
mechanics, including the addition of momenta and velocities via Kaniadakis addition, and
Tsallis addition. We also investigate extensions to random additive deformations, and find
evidence (based on simulation studies) for a universal limit specific to each statistical
system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The classical central limit theorem (CLT) is a cornerstone of statistics. In this article, we generalize this classical result
to settings in which standard addition on the real line is replaced by a binary operation that satisfies Lie group properties.
Additional mild smoothness assumptions are also imposed, allowing us to obtain explicit limiting distributions.

Our principalmotivation comes fromphysics. As explained by Tempesta (2011), different Lie group operations on the real
line are associated with distinctive forms of entropy that extend Boltzmann–Gibbs entropy, which corresponds to standard
addition and classical central limit theory. Tsallis entropy applies to statistical systems exhibiting the features of long range
dependence (Tsallis, 1988), and has been successfully applied, for example, in image thresholding (Portes de Albuquerque
et al., 2004), modeling debris flow (Singh and Cui, 2015), analyzing electromagnetic pre-seismic emissions (Potirakis et al.,
2012), and modeling the distribution of momenta of cold atoms in optical lattices (Douglas et al., 2006). Kaniadakis entropy
arises when combining momenta in special relativity (Kaniadakis, 2006, 2013), and its associated central limit theory has
recently been developed by McKeague (2015), who showed that the limiting distributions take the form of hyperbolic
functions of standard normals.

There is a general formulation of the CLT on locally compact Lie groups due to Wehn (1962), but conditions are placed
on the random elements after they are logarithmically mapped into the Lie algebra (tangent space at the identity). The
limit distribution is described in terms of the infinitesimal generator of a semi-group of probability measures on the Lie
group, but in general it does not have an explicit form. In our setting of Lie groups on the real line, however, we are able
to provide an explicit CLT using only classical conditions on the random summands and a mild smoothness condition on
the associated logarithmic map. Our main result generalizes the classical CLT to this setting, and addresses an open problem
raised by Tempesta (2011, Section VIII) as towhether under suitable conditions an analogue of the CLT holds for ‘‘universality
classes’’ related to generalized types of entropy, including those mentioned above.
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We also establish an extension of ourmain result tomore severe deformations that arise when the smoothness condition
on the logarithmic map is relaxed (for which a slower than

√
n-normalization is required). We then discuss in detail all the

Lie group examplesmentioned above, as well as the operation for combining velocities in special relativity, andmore severe
additive deformations defined via exponentiation.

Both the Tsallis and Kaniadakis universality classes involve fitting parameters, so the question naturally arises as to the
effect of a random specification of such parameters on the central limit behavior of the system.We investigate this question
by Monte Carlo simulation studies, and reach the somewhat surprising conclusion that there is a universal limit law in the
sense that it is determined solely by the form of the deformation and the expected value of the fitting parameter.

2. CLTs under additive deformations

Our results extend the classical CLT on the real line to allow additive deformations of the following form. Standard
addition is replaced by a group operation ⊕ defined on an open and possibly infinite interval G, with (G, ⊕) assumed to
be a Lie group under the usual topology on the real line. Since all Lie groups on the real line are isomorphic to their Lie
algebra (R, +), there exists an isomorphism g : G → R (that is unique up to scalar multiples) such that

g(x ⊕ y) = g(x) + g(y) (1)

for all x, y ∈ G. In Lie group terminology, g is called the ‘‘logarithmic’’ map, and its inverse f = g−1 the ‘‘exponential’’ map.
Let e ∈ G be the identity, and denote Ge = G − e. We now give our main result showing that if g has a second order Taylor
expansion around e, in which the leading term is linear, then the CLT extends to ⊕-addition.

Theorem 1. Let {Xi} be a sequence of i.i.d. Ge-valued mean-zero random variables with finite variance σ 2, and let Xn,i =

e + Xi/
√
n. Suppose there exists a function ρ : Ge → R+ such that

ρ(x) → 0 as x → 0, ρ(x/s) ≤ M for x ∈ Ge, s ≥ s0 (2)

|g(e + x) − x − ax2| ≤ x2ρ(x) for x ∈ Ge, (3)

where a, s0 > 1 and M > 0 are prespecified constants. Also suppose there exist constants c1, c2, c3, and s1 > 0, such that for all
x ∈ Ge and s ≥ s1,

s|g(e + x/s)| ≤ c1|x|1(|x| ≥ c2) + c3. (4)

Then

Xn,1 ⊕ Xn,2 ⊕ · · · ⊕ Xn,n
D

−→ f (Z) (5)

where Z ∼ N(aσ 2, σ 2).

Remarks. 1. The key smoothness condition (3) in Theorem 1 is that g has a parabolic local approximation at the identity
e. The parabola can take the general form x → a(x − e)2 + b(x − e), the only requirements being that it go through
(e, 0), since g(e) = 0, and that b ≠ 0 (so the leading term is linear). The coefficients a and b, along with σ 2, determine
the ‘‘bias’’ of the normal r.v. Z that appears in the limit; for simplicity we stated the result just for the case b = 1 (giving
bias aσ 2), but the result extends to the general case, where the limit is f (bZb) with Zb ∼ N(aσ 2/b, σ 2). This follows from
Theorem 1 with a changed to a/b, and the maps g and f changed to x → g(x)/b and x → f (bx), respectively. When g is
locally approximated by a straight line x → b(x − e) (i.e., a = 0), there is no bias.

2. In Section 3 wewill examine various examples in which we can find the logarithmic map g , along with its local parabolic
approximation, leading to an explicit limit distribution. A classical and well-known instance arises in connection with
the CLT for products of positive r.v.s, in which case G = (0, ∞), x ⊕ y = xy for x, y ∈ G, e = 1, g = log, f = exp,
and the limit distribution is log-normal. Specifically, our result gives

n
i=1 Xn,i

D
−→ exp(Z), where Z ∼ N(−σ 2/2, σ 2),

where Xi > −1 is assumed to have mean zero and finite variance σ 2. Condition (3) holds in this case by a Taylor series
expansion of x → log(1 + x) around 0 ∈ Ge = (−1, ∞), namely

| log(1 + x) − x + x2/2| ≤ x2ρ(x), x > −1, (6)

where ρ(x) = |x/(1 + x)| satisfies (2) withM = 1/(s0 − 1) for any s0 > 1. This expansion is verified in Section 3.2.
3. Condition (4) was only used in the proof to allow dominated convergence arguments to be applied to

√
ng(X1/

√
n) and

ng(X1/
√
n)2. However, if X1 is assumed to have a finite fourthmoment then (4) is not needed and the theorem continues

to hold, as shown in Lemma 1 in the Supplementary Materials (see Appendix A).
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