
Statistics and Probability Letters 118 (2016) 171–176

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Recovering a distribution from its translated fractional
moments
H. Gzyl a, A. Tagliani b,∗
a Centro de Finanzas IESA, Caracas, Venezuela
b Department of Economics and Management, University of Trento, 38100 Trento, Italy

a r t i c l e i n f o

Article history:
Received 17 March 2015
Accepted 23 June 2016
Available online 6 July 2016

Keywords:
Entropy
Entropy convergence
Fractional moment
Kullback–Leibler distance
Maximum entropy

a b s t r a c t

We take up the problem of determining the distribution of the hitting time of a parabola by
a Brownianmotion.We use themaximumentropymethod to obtain a good approximation
to the true density from its translated fractional moments.
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1. Introduction

In Shepp (1967), the author considered the problem of determining the distribution of the hitting time of a parabola by a
Brownian motion issued from the origin. To establish notations and to describe the problem, let {B(t)|t ≥ 0} be a standard
Brownianmotion on the real line, and consider the parabola x2−c2(a+ t) = 0 in [0, ∞)×R. Denote by g(t) = ±c(a+ t)1/2
the two branches of the parabola. Let T := inf{t > 0|B(t) = g(t)} be the first time that the Brownian motion touches
the parabola. In that paper, Shepp proved that the optional sampling theorem can be invoked as we do to conclude that
E[exp(−λ2T/2) exp(λB(T ))] = 1. This can be rewritten as

∞

0
pa(t) exp(−λ2t/2) cosh cλ(a + t)1/2dt = 1

in which we use pa(t) for the density of T to indicate the dependence on a, and when a = 1 we shall use p(t) instead of
p1(t). Shepp proceeds by multiplying both sides of that expression by λβ exp(−λ2a/2) and integrating with respect to λ
over [0, ∞) to obtain

∞

0
pa(t)(a + t)µdt =


∞

0
λβ exp(−λ2a/2)dλ/


∞

0
λβ exp(−λ2/2) cosh cλdλ. (1.1)

There µ = −(1 + β)/2 and β > −1. The expression can be extended to µ > 0 (or β < −1) by analytic continuation, and
it is rewritten as ∞

0
pa(t)(a + t)µdt

−1
= a−µ

∞
m=0

(−2c2)mµ(µ − 1) . . . (µ − m + 1)/(2m)! (1.2)
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The series in the right hand side of (1.2), is that of the confluent hypergeometric-function (Abramovitz and Stegun, 1965),
denoted by a−µM(−µ, 1

2 ,
c2
2 ). Observe that the inverse of the left hand side of (1.2) is the translated fractional moments

of pa, which happen to be finite whenever c < c0 = c0(µ), independently of the value of a, where c0 is the first (positive)
zero of M(−µ, 1

2 ,
c2
2 ). Also, the nth moment of T is finite whenever c is less that the first (positive) zero of the Hermite

polynomial He2n. See Abramovitz and Stegun (1965) for the tabulation of these zeros.
Besides Sheep’s work on the subject, see also Breiman (1996) and Darling and Siegert (1953) for different approaches

to the problem. For related problems, applications and more recent work, see Durbin (1988), Durbin (1992), Bañuelos et al.
(2001), Peskir (2002), Novikov et al. (2003), Borovkov and Novikov (2005), Cheng et al. (2006), Wang and Pötzelberger
(2007), Masaku (2008), Kahale (2008), Keener (2013) and Aksop et al. (2013) for a review of results on related problems.
Our aim here will be to determine an approximation pN(t) to p(t) from the values of M(−µ, 1

2 ,
c2
2 ) for negative, fractional

(i.e., non-integral) values of µ. For that we shall use the method of maximum entropy (MaxEnt for short).
Once the approximation pN(t) has been obtained, we shall compare the result of computing the true moment curve

µ →


∞

0 (1 + t)µpa(t)dt = aµ/M(−µ, 1
2 ,

c2
2 ) with the approximate one µ →


∞

0 (1 + t)µpN(t)dt .
The remainder of the paper is organized as follows: before closing this section, we prove in two different ways that

pa(t) = a−1p1(t/a). In Section 2weargue that a sequence of shifted fractionalmoments determines p(t)uniquely. Therefore,
through a previously formulated criterion choice, it makes sense to consider a few fractional moments (the onesminimizing
the entropy) to approximate p(t) numerically. In Section 3 we review the basics of the maximum entropy method as well
as the procedure to determine which moments to use, and in Section 4 we present the numerical results. There we shall
examine two quantitative criteria of performance of the method. On one hand wemeasure the quality of the reconstruction
for each number of moments by the difference between the true and reconstructed moment curves, and on the other
hand we use the entropy convergence results mentioned in Section 3 as criteria for the quality of the approximation of
the reconstructed density to the true density. We end with some concluding remarks.

1.1. The dependence of pa(t) on a

There are two ways of realizing that pa(t) = a−1p1(t/a). Let us say a few words about them. To begin with, note that
Ta = inf{T > 0|B(t) = ±(a + t)1/2} = a inf{t > 0|a−1/2B(ta) = ±(1 + t)1/2}.

As B̂(t) := a−1/2B(ta) equals B(t) in distribution, it is clear that Ta/a ∼ T1 in distribution, therefore
Fa(t) = P(Ta ≤ t) = P(T1 ≤ t/a) = F1(t/a) ⇒ pa(t) = ap1(t/a).

If we use the short hand E[(a + Ta)µ] = aµ/M for the right hand of (1.2), clearly
E[(1 + Ta/a)µ] = E[(1 + T1)µ]/M

which combined with a simple change of variables, yields the claim. All of this is to justify choosing a = 1 in the section
about numerical results and forgetting about the matter. Recall that we shall use p(t) instead of p1(t).
Comment The crossing time of ±c(1 + t)1/2 by the standard Brownian motion is the same as the crossing time of
2
 t
0 B(s)dB(s)−(c2−1)t of the level c2. This observation does not seem to lead to a simplified computation of the distribution

of T1.

2. Lin’s determination results

Our setup is a trivial minor variation on the setup considered by Lin (1992, Theorem 2). There he proved that,

Theorem 2.1. If Z is a r.v. assuming values froma bounded interval [0, 1] and {αn}
∞

n=0 an infinite sequence of positive and distinct
numbers satisfying limn→∞ αn = 0 and


∞

n=0 αn = +∞ then the sequence of moments {E(Zαn)}∞n=0 characterizes Z.

The result hinges on the fact that an analytical function is determined by its values at a sequence of points having an
accumulation point in its domain of analyticity.

Tomake use of Lin’s results we introduce the change of variables Z =
1

1+T , having support [0, 1] and density fZ (z), related
to p(t) by p(t) =

1
(1+t)2

fZ ( 1
1+t ). Let α > 0 and µ = −α, so that Lin theorem may be used because

E(Zα) = E


1
1 + T

α
= E(1 + T )µ =

 1

0
zα fZ (z)dz = 1/M


α,

1
2
,
c2

2


.

1. From Lin’s results we conclude a sequence {E(1 + T )µn =


∞

0 (1 + t)µnp(t)dt}∞n=0, with µn = −αn ≤ 0 in according
with Lin’s theorem, is enough to characterize p(t).

2. For practical purposes only a finite set {µn}
N
n=0 has to be taken into account. The maximum entropy method outlined in

next section allows us to formulate an optimal criterion choice of µn based upon a convergence entropy theorem and
previously formulated (Novi Inverardi and Tagliani, 2003, Appendix A).

3. The required value N is calculated by imposing p(t) and its approximation pN(t) has a preassigned error, which will be
measured in terms of Kullback–Leibler distance, as outlined in the sequel.
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