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Abstract

We prove an analogue of the portmanteau theorem on weak convergence of probability measures allowing measures

which are unbounded on an underlying metric space but finite on the complement of any Borel neighbourhood of a fixed

element.
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1. Introduction

Weak convergence of probability measures on a metric space has a very important role in probability
theory. The well-known portmanteau theorem due to A.D. Alexandroff (see for example Theorem 11.1.1 in
Dudley, 1989) provides useful conditions equivalent to weak convergence of probability measures; any of
them could serve as the definition of weak convergence. Proposition 1.2.13 in the book of Meerschaert and
Scheffler (2001) gives an analogue of the portmanteau theorem for bounded measures on Rd . Moreover,
Proposition 1.2.19 in Meerschaert and Scheffler (2001) gives an analogue for special unbounded measures on
Rd , more precisely, for extended real-valued measures which are finite on the complement of any Borel
neighbourhood of 0 2 Rd .

By giving counterexamples we show that the equivalences of (c) and (d) in Propositions 1.2.13 and 1.2.19 in
Meerschaert and Scheffler (2001) are not valid (see our Remarks 3 and 4). We reformulate Proposition 1.2.19
in Meerschaert and Scheffler (2001) in a more detailed form by adding new equivalent assertions to it (see
Theorem 1). Moreover, we note that Theorem 1 generalizes the equivalence of (a) and (b) in Theorem 11.3.3 of
Dudley (1989) in two aspects. On the one hand, the equivalence is extended allowing not necessarily finite
measures which are finite on the complement of any Borel neighbourhood of a fixed element of an underlying
metric space. On the other hand, we do not assume the separability of the underlying metric space to prove the
equivalence. But we mention that this latter possibility is hiddenly contained in Problem 3, p. 312 in Dudley
(1989). For completeness, we give a detailed proof of Theorem 1. Our proof goes along the lines of the proof
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of the original portmanteau theorem and differs from the proof of Proposition 1.2.19 in Meerschaert and
Scheffler (2001).

To shed some light on the sense of a portmanteau theorem for unbounded measures, let us consider the
question of weak convergence of infinitely divisible probability measures mn, n 2 N towards an infinitely
divisible probability measure m0 in case of the real line R. Theorem VII.2.9 in Jacod and Shiryayev (1987) gives
equivalent conditions for weak convergence mn!

w
m0. Among these conditions we haveZ

R

f dZn !

Z
R

f dZ0 for all f 2 C2ðRÞ, (1)

where Zn, n 2 Zþ are nonnegative, extended real-valued measures on R with Znðf0gÞ ¼ 0 and
R
R
ðx2 ^ 1Þ

dZnðxÞo1 (i.e., Lévy measures on R) corresponding to mn, and C2ðRÞ is the set of all real-valued bounded
continuous functions f on R vanishing on some Borel neighbourhood of 0 and having a limit at infinity.
Theorem 1 is about equivalent reformulations of (1) when it holds for all real-valued bounded continuous
functions on R vanishing on some Borel neighbourhood of 0.

2. An analogue of the portmanteau theorem

Let N and Zþ be the set of positive and nonnegative integers, respectively. Let ðX ; dÞ be a metric space and
x0 be a fixed element of X. Let BðX Þ denote the s-algebra of Borel subsets of X. A Borel neighbourhood U of
x0 is an element of BðX Þ for which there exists an open subset eU of X such that x0 2 eU � U . Let Nx0

denote
the set of all Borel neighbourhoods of x0, and the set of bounded measures on X is denoted by MbðX Þ. The
expression ‘‘a measure m on X’’ means a measure m on the s-algebra BðX Þ.

Let CðX Þ, Cx0
ðX Þ and BLx0

ðX Þ denote the spaces of all real-valued bounded continuous functions on X, the
set of all elements of CðX Þ vanishing on some Borel neighbourhood of x0, and the set of all real-valued
bounded Lipschitz functions vanishing on some Borel neighbourhood of x0, respectively.

For a measure Z on X and for a Borel subset B 2 BðX Þ, let ZjB denote the restriction of Z onto B, i.e.,
ZjBðAÞ :¼ ZðB \ AÞ for all A 2 BðX Þ.

Let mn, n 2 Zþ be bounded measures on X. We write mn!
w
m if mnðAÞ ! mðAÞ for all A 2 BðX Þ with

mðqAÞ ¼ 0. This is called weak convergence of bounded measures on X.
Now we formulate a portmanteau theorem for unbounded measures.

Theorem 1. Let ðX ; dÞ be a metric space and x0 be a fixed element of X. Let Zn, n 2 Zþ, be measures on X such

that ZnðXnUÞo1 for all U 2Nx0
and for all n 2 Zþ. Then the following assertions are equivalent:

(i)
R

XnU
f dZn !

R
XnU

f dZ0 for all f 2 CðX Þ, U 2Nx0
with Z0ðqUÞ ¼ 0,

(ii) ZnjXnU!
w
Z0jXnU for all U 2Nx0

with Z0ðqUÞ ¼ 0,
(iii) ZnðXnUÞ ! Z0ðXnUÞ for all U 2Nx0

with Z0ðqUÞ ¼ 0,
(iv)

R
X

f dZn !
R

X
f dZ0 for all f 2 Cx0

ðX Þ,
(v)

R
X

f dZn !
R

X
f dZ0 for all f 2 BLx0

ðX Þ,
(vi) the following inequalities hold:

(a) lim supn!1 ZnðXnUÞpZ0ðXnUÞ for all open neighbourhoods U of x0,
(b) lim infn!1 ZnðXnV ÞXZ0ðXnV Þ for all closed neighbourhoods V of x0.

Proof. (i) ) (ii): Let U be an element of Nx0
with Z0ðqUÞ ¼ 0. Note ZnjXnU 2MbðX Þ; n 2 Zþ. By the

equivalence of (a) and (b) in Proposition 1.2.13 in Meerschaert and Scheffler (2001), to prove ZnjXnU!
w
Z0jXnU

it is enough to check
R

X
f dZnjXnU !

R
X

f dZ0jXnU for all f 2 CðX Þ. For this it suffices to show that for all real-
valued bounded measurable functions h on X, for all A 2 BðX Þ and for all n 2 Zþ we haveZ

X

hdZnjA ¼

Z
A

hdZn. (2)

By Beppo–Levi’s theorem, a standard measure-theoretic argument implies (2).
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