

Available online at www.sciencedirect.com





Statistics & Probability Letters 76 (2006) 1873-1881

www.elsevier.com/locate/stapro

## Small ball probabilities for jump Lévy processes from the Wiener domain of attraction

Elena Shmileva<sup>1</sup>

Saint Petersburg Electrotechnical University, Professor Popov Str. 5, BM-2, St. Petersburg 197376, Russia

Received 25 August 2004; received in revised form 12 April 2006; accepted 24 April 2006 Available online 5 June 2006

### Abstract

Let  $X_{\rho}$  be a jump Lévy process of intensity  $\rho$  which is close to the Wiener process if  $\rho$  is big. We study the behavior of shifted small ball probability, namely,  $\mathbf{P}\{\sup_{t \in [0,1]} | X_{\rho}(t) - \lambda f(t) | \leq t\}$  under all possible relations between the parameters  $r \to 0, \rho \to \infty, \lambda \to \infty$ . The shift function f is of bounded variation of its derivative.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Purely non-Gaussian Lévy process; Additive process; Small deviations; Skorokhod formula; Density transformation of Lévy processes

#### 1. Problem statement

Let  $(B[0, 1], \|\cdot\|)$  be the space of bounded functions on [0, 1] endowed with the uniform norm. Introduce the purely non-Gaussian Lévy process determined by the generating triplet  $(0, \gamma, \Lambda)$  (notations correspond to Sato, 1999). By Lévy-Ito integral representation it is

$$\xi(t) = \int_0^t \int_{\{|\ell| \le 1\}} \ell \overline{\mathscr{P}}(\mathrm{d} s, \mathrm{d} \ell) + \int_0^t \int_{\{|\ell| > 1\}} \ell \mathscr{P}(\mathrm{d} s, \mathrm{d} \ell) + \gamma t,$$

where  $\mathscr{P}$  is the Poisson measure on  $\mathbb{R}^+ \times \mathbb{R} \setminus \{0\}$  associated to the deterministic measure  $Leb \times \Lambda$ . By  $\overline{\mathscr{P}}$  we denote the centering of  $\mathcal{P}$ . In the sequel, by  $\bar{\eta}$  we always denote the centering of a random element  $\eta$ .

Additionally assume that the support,  $supp(\Lambda)$ , of the Lévy measure  $\Lambda$  is bounded and denote  $\mathscr{L} := supp(\Lambda)$ . This assumption, in particular, give us  $\mathbf{E}\xi(t) < \infty$  and  $\mathbf{D}\xi(t) = t \int_{\Omega} \ell^2 \Lambda(d\ell) < \infty$  for any  $t \in [0, 1]$ . Denote  $\sigma^2 := \mathbf{D}\xi(1).$ 

Introduce the centered normalized process of intensity  $\rho, \rho > 0$ 

$$\mathbf{X}_{\rho}(t) \coloneqq \frac{\bar{\xi}(\rho t)}{\sqrt{\rho}}, \quad t \in [0, 1].$$

E-mail address: elena.shmileva@gmail.com.

0167-7152/\$ - see front matter (C) 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2006.04.037

<sup>&</sup>lt;sup>1</sup>Research supported by RFBR-DFG Grant 04-01-04000 and by INTAS Grant 03-51-5018.

Since the variance of  $\xi$  is finite, the process belongs to the domain of attraction of the Wiener process, in other words, the weak invariance principle holds  $X_{\rho} \stackrel{d}{\Rightarrow} \sigma W, \rho \to \infty$ .

Our goal is to investigate the behavior of shifted small ball probabilities for the process  $X_{\rho}$ , i.e., we study  $\mathbf{P}\{\|X_{\rho} - \lambda f\| < r\}$  as  $r \to 0, \lambda \to \infty, \rho \to \infty$ . We assume that the shift function f belongs to the space of admissible shifts for the Wiener process, that is

$$E := \left\{ f \in B[0,1] \mid f(0) = 0, \ f \in \operatorname{AC}[0,1], \ \int_0^1 f'(t)^2 \, \mathrm{d}t < \infty \right\},\$$

where AC[0, 1] is the space of absolutely continuous functions on [0, 1].

In the sequel, we need the following notations. For any  $f \in B[0, 1]$  put

$$|f|_E^2 \coloneqq \begin{cases} \int_0^1 f'(t)^2 \, \mathrm{d}t, & \text{when } f \in E, \\ \infty, & \text{when } f \notin E, \end{cases}$$

this expression is often called *energy* of function f. By B(f,r) denote the ball of center f and radius r in  $(B[0, 1], \|\cdot\|)$ . We say that the maximal difference between the energy of f and the energy of any other function in the ball B(f, r) is the *energy saving* in this ball and write

$$\Delta_f(r) \coloneqq |f|_E^2 - \inf_{B(f,r)} |h|_E^2.$$

#### 2. Main result

In the theorem below the shift function f obeys the condition  $\operatorname{Var} f' < \infty$ , though it is easy enough to obtain similar results for any regular function from E (see Shmileva, 2004). Nevertheless, for arbitrary admissible shift function the problem has not been solved.

**Theorem 1.** Suppose  $f \in E$  has a version of its Lebesgue derivative f' such that f' is a function of bounded variation (Var  $f' < \infty$ ). If the parameters  $\lambda, r, \rho$  satisfy

(1)  $\lambda \to \infty, \rho \to \infty, r/\lambda \to 0$ , (2)  $\rho r^2 \to \infty$ , (3)  $\rho/\lambda^2 \to \infty$ ,

then the following asymptotic estimates are true:

$$\mathbf{P}\{\|\mathbf{X}_{\rho} - \lambda f\| < r\} \leq \exp\left\{-\frac{\lambda^2}{2\sigma^2} |f|_E^2 - \frac{\pi^2 \sigma^2}{8r^2} (1 + o(1)) + \frac{\lambda r}{\sigma^2} (|f'(1)| + \operatorname{Var} f')(1 + o(1)) + \frac{1}{6\sigma^6} \frac{\lambda^3}{\rho^{1/2}} \left(\theta_f + o(1)\right)\right\},$$

$$\begin{aligned} \mathbf{P}\{\|\mathbf{X}_{\rho} - \lambda f\| < r\} &\geq \exp\left\{-\frac{\lambda^{2}}{2\sigma^{2}}|f|_{E}^{2} - \frac{\pi^{2}\sigma^{2}}{8r^{2}(1-\delta)^{2}}(1+o(1)) \\ &+ (2\delta - 1)\frac{\lambda r}{\sigma^{2}}(|f'(1)| + \operatorname{Var} f')(1+o(1)) + \frac{1}{6\sigma^{6}}\frac{\lambda^{3}}{\rho^{1/2}}(\theta_{f} + o(1))\right\},\end{aligned}$$

where  $\delta \in [0, 1)$  is arbitrary and  $\theta_f := \int_{\mathscr{L}} \ell^3 \Lambda(\mathrm{d}\ell) \cdot \int_0^1 f'^{(3)}(t) \,\mathrm{d}t$ .

#### 3. History and comments

Let us compare Theorem 1 with previous results. The shifted small ball estimate of the Wiener process was obtained by Grill (1991)

$$\mathbf{P}\{\|W - \lambda f\| < r\} = \exp\left\{-\frac{\lambda^2}{2}|f|_E^2 - \frac{\pi^2}{8r^2}(1 + o(1)) + \mathbf{R}\right\} \text{ as } \lambda \to \infty, \ r \to 0,$$

Download English Version:

# https://daneshyari.com/en/article/1154261

Download Persian Version:

https://daneshyari.com/article/1154261

Daneshyari.com