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a b s t r a c t

We develop an algorithm for finding exact critical values for the two-sample
Kolmogorov–Smirnov test in the finite-population case.We then compare these exact crit-
ical values to the asymptotic values that are available in the literature. The asymptotic crit-
ical values work well for equal sample sizes, but can be excessively conservative when the
sample sizes differ.
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1. Introduction

Given simple random samples X1, . . . , Xn and Y1, . . . , Ym from two infinite populations, one oftenwishes to test for a dif-
ference between the two populations. Such tests can be done either in parametric fashion, as with the familiar two-sample
t test, or in nonparametric fashion. One commonly used nonparametric test is the two-sample Kolmogorov–Smirnov test.

Let F(t) and G(t) be the distribution functions for the two populations. The null and alternative hypotheses for the
two-sample Kolmogorov–Smirnov test are then H0 : F(t) = G(t) for all t and H1 : F(t) ≠ G(t) for some t . One computes the
empirical distribution functions F̂(t) =

1
n

n
i=1 I(Xi ≤ t) and Ĝ(t) =

1
m

m
j=1 I(Yj ≤ t), where I(A) is the indicator function

that is one if A holds and zero otherwise. The test statistic is then DKS = supt |F̂(t) − Ĝ(t)|, and one rejects H0 when DKS
is excessively large. Exact critical values were tabled by Kim and Jennrich (1974), and accurate asymptotic approximations
have also been developed (see Kim, 1969).

Suppose now that the two populations are finite. The two populations can then be the same only if both are of the same
size, say N , and the simple random sampling would be done without replacement to maximize the representativeness of
the sample. Since the populations are finite, the population distribution functions are no longer continuous. Instead, they
are step functions given by F(t) =

1
N

N
i=1 I(xi ≤ t) and G(t) =

1
N

N
i=1 I(yi ≤ t), where {x1, . . . , xN} and {y1, . . . , yN} are

the values for the two populations. We may still test H0 : F(t) = G(t) for all t versus H1 : F(t) ≠ G(t) for some t by using
the test statistic DKS = supt |F̂(t)− Ĝ(t)|, but the critical values from the infinite-population case are no longer appropriate.
Instead, since the population is gradually exhausted as the sample size increases, the critical value for a given α level tends
to be smaller here than in the infinite-population case. O’Neill and Stern (2012) showed how to obtain asymptotic critical
values by multiplying the infinite-population critical values by appropriate constants. In this paper, we show how to obtain
critical values that are exact even for small samples.

We first, in Section 2, develop an algorithm for computing probabilities of the form P(DKS ≤ c) under the null hypothesis
in the finite-population case. Probabilities of the form P(DKS > c) can be then obtained via the complement rule, and these
probabilities can be used to obtain exact critical values appropriate for testing at any desired α level. In Section 3, we use
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the algorithm from Section 2 to compare the sizes for level-α tests that use exact critical values and the sizes for level-α
tests that use the asymptotic critical values of O’Neill and Stern (2012). What we find is that while the asymptotic critical
values performwell when n = m, they can be excessively conservative when n andm differ. We conclude with a discussion
in Section 4.

2. The algorithm

Assume known population size N and sample sizes n and m. Suppose that we wish to compute P(DKS ≤ c) for specified
c ≥ 0under the null hypothesis. The twopopulations are then exactly the same, andwe assume for now that allN population
values are distinct, though we relax this assumption later on. Since the test statistic DKS = supt |F̂(t) − Ĝ(t)| is unchanged
when we apply the same monotone transformation to both samples, we may assume without loss of generality that the N
population values are the integers 1 to N .

Choosing the first sample requires selecting n valueswithout replacement from theN population values, and choosing the
second sample requires independently choosing m values without replacement from the N population values. Thus, there
are


N
n

 
N
m


ways to choose the two samples, and all such choices are equally likely. As a result, the probability P(DKS ≤ c)

may be written as T/


N
n

 
N
m


, where T is the number of possible pairs of samples such that DKS ≤ c.

In order for a sample to satisfy DKS ≤ c , we need |F̂(t) − Ĝ(t)| ≤ c at all points t . Let K be the set of all integer pairs
(i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ m, such that |i/n − j/m| ≤ c , and define count functions I(t) = #{Xi ≤ t} and J(t) = #{Yj ≤ t}.
A sample then satisfies DKS ≤ c if and only if, for every real number t , the ordered pair (I(t), J(t)) is in the set K .

To develop an efficient algorithm for computing T , we first consider a small example. Suppose that n = m = 3 and that
we wish to compute P(DKS ≤ 0.5). The set K of allowable pairs (i, j) is then as shown in Table 1. Specifically, Table 1 shows
values for the indicator function K(i, j) that is one if (i, j) ∈ K and zero otherwise. Assuming N ≥ 5, one pair of samples that
gives DKS ≤ 0.5 is {1, 2, 4} (first sample) and {2, 3, 5} (second sample). With this pair of samples, we have

(I(t), J(t)) =


(0, 0), t < 1,
(1, 0), 1 ≤ t < 2,
(2, 1), 2 ≤ t < 3,
(2, 2), 3 ≤ t < 4,
(3, 2), 4 ≤ t < 5,
(3, 3), t ≥ 5.

Thus, as t increases, the ordered pair (I(t), J(t)) goes from (0, 0) to (n,m) = (3, 3) in five steps, with the consecutive steps
being of sizes (1, 0), (1, 1), (0, 1), (1, 0), and (0, 1), respectively. A step of size (1, 0) occurs at any value t that is in the first
sample only; a step of size (0, 1) occurs at any value t that is in the second sample only; and a step of size (1, 1) occurs at
any value t that appears in both samples. Only these three step sizes are possible.

Any choice of samples that leads to the same sequence of five steps that we obtained with our samples {1, 2, 4} and
{2, 3, 5}would also give DKS ≤ 0.5, and one such choice of samples is determined by choosing the five values (1, 2, 3, 4, and
5 in our case) where the steps occur. Thus, the number of samples where (I(t), J(t)) goes through the same steps that we
saw in our example is


N
5


. Had the path for the sample we wrote down required four steps rather than five, the number of

sampleswith the same sequence of stepswould be

N
4


, and in general, the number of samples that give a particular sequence

of k ordered steps is

N
k


. The minimum possible number of steps required to go from (0, 0) to (n,m) is max{n,m}, which

occurs when the units in the smaller sample all also appear in the larger sample, thus maximizing the amount of overlap
between the two samples, and the maximum possible number of steps is n+m, which occurs when the two samples do not
overlap at all. Thus, taking


a
b


= 0 if a < b, we have that

T =

n+m
k=max{n,m}

Ck


N
k


,

where Ck is the number of k-step paths from (0, 0) to (n,m) such that every step is of size either (0, 1), (1, 0), or (1, 1) and
the path never leaves the set K .

To obtain the counts Cmax{n,m}, . . . , Cn+m, we use a recursion. Define Ck(i, j) to be the number of k-step paths from (0, 0)
to (i, j) where each step is of size either (0, 1), (1, 0), or (1, 1) and where the path never leaves the set K . It then follows
that Ck = Ck(n,m). The kth step in any path that contributes to Ck(i, j) must have been of size either (0, 1), (1, 0), or (1, 1).
Thus, for k ≥ 1,

Ck(i, j) = K(i, j) {Ck−1(i − 1, j) + Ck−1(i, j − 1) + Ck−1(i − 1, j − 1)} , (1)

where Ck(i, j) is taken to be zero if i, j, or k is negative. This leads to the following algorithm for computing P(DKS ≤ c) under
the null hypothesis.
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