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a b s t r a c t

An effective model for time-varying quantiles of a time series is of considerable practical
importance across various disciplines. In particular, in financial risk management, compu-
tation of Value-at-risk (VaR), one of themost popular riskmeasures, involves knowledge of
quantiles of portfolio returns. This paper examines the randomwalk behavior of VaRs con-
structed under twomost commonapproaches, viz. historical simulation and the parametric
approach using GARCHmodels. We find that sequences of historical VaRs appear to follow
a unit root model, which can be an artifact under some settings, whereas its counterpart
constructed via the parametric approach does not follow a randomwalk model by default.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Forecasting future values of an observed time series is an important problem for a wide range of disciplines, including
genetics, medical studies, meteorology, financial investments and risk management. There has been extensive literature
discussing quantile regression; see Koenker (2005), Koenker and Xiao (2004) and Koenker and Xiao (2006) among others
in which quantiles of autoregressive models are studied. In particular, Koenker and Xiao (2004) consider a quantile
autoregression (QAR) model as follows: Let {rt} be a first-order autoregressive process that satisfies:

rt = φrt−1 + ut , (1)

where ut denotes white noise, one can write the τ th conditional quantile of rt as

Qrt (τ | rt−1) = φrt−1 + Qu(τ ), (2)

where QX (τ | F ) denotes the τ th conditional quantile of X given filtration F . Observe that

Qrt (τ | rt−1) − Qrt−1(τ | rt−2) = {φrt−1 + Qu(τ )} − {φrt−2 + Qu(τ )}

= φ(τ)(rt−1 − rt−2)

= · · · =

t−1
j=1

φj(ut−j − ut−j−1),

where the last equality follows if we assume that r0 = u0 = 0. The last expression in the previous equation may suggest
that the quantile series may behave like a random walk.

In this paper, we shall illustrate our results and examples via value at risk (VaR), a quantile estimate that has been
frequently used as an effective risk measure in the financial market. Recall that VaR is defined as the worst loss over a target
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horizon such that there is a low, pre-specified probability that the actual losswill be larger (see Jorion, 2006).Mathematically,
if we let R denote the next period return and c ∈ (0, 1) the confidence level, we can write

Pr(R < VaR) ≤ 1 − c.

Since its introduction in 1996 (Morgan, 1996), VaR has become the standardmeasure of market risk. Along this direction,
Engle and Manganelli (2004) directly model the quantile and introduce a new class of CAViAR models that specify the
evolution of quantile over time based on an autoregressive process; De Rossi and Harvey (2009) propose a state space
model for signal (quantiles and expectiles) extraction in an attempt to answer the question of which particular form of
non-linear functions should be adopted under the Engle and Manganelli (2004)’s framework. Indeed, it is of both practical
and theoretical interest to study if a series of VaRs behave like a random walk. In various literature, such an autoregressive
framework of VaRs series is usually imposed. Besides, the results also bears a financial consequence: If the unit root behavior
were true, then the best prediction for the next period quantile would be the current value.

We shall consider the following model on {VaRt}t≥0, a sequence of VaR’s evaluated at time t:

VaRt = α + βVaRt−1 + ϵt , (3)

where ϵt ’s are i.i.d. noises. The parameter of interest is the regression coefficient β . We attempt to answer the question of
whether or notβ = 1 for two of the commonly usedVaRmodels, namely historical VaR and parametric VaR. In particular, we
find that under the efficient market hypothesis setting, i.e. the log stock prices follow a randomwalkmodel which is usually
captured by a Lévy process (Schoutens, 2003), the unit root feature demonstrated by the VaR using historical simulation
approach can be spurious. Parametric VaRs using GARCH(1, 1) models, on the contrary, will not exhibit such a feature.

The rest of the paper is structured as follows: Section 2 introduces the historical VaR and its possible artifact. Section 3
discusses the estimation of VaR following RiskMetrics approach with GARCH(1, 1) model, followed by Section 4 which
concludes the article.

2. Historical VaR

Historical simulation in VaR analysis is a procedure for predicting the required quantile by constructing the cumulative
distribution function (CDF) of portfolio returns over time. Different from its parametric counterparts, historical simulation
does not assume a particular distribution of the asset returns. It is popular amongst practitioners and is accepted by
regulators because it is relatively easy to implement. Pérignon and Smith (2010) survey the VaR disclosures of a cross section
of 60 US, Canadian and large international banks between 1996 and 2005. Their results conclude that 73% of banks that
disclosed their VaR methodology used the historical simulation method.

To compute a VaR series using historical simulation, one has to consider the order statistics of the return series observed
under a moving windowwith a fixed width, say n days. The corresponding non-parametric VaR is then defined as the value
of the order statistics below which only α ∈ (0, 1) percent of the data within the window have smaller values, denoted as
VaR(n)

t ; for details, readers may refer to Chan and Wong (2015). Mathematically, given a series of returns {rt}t≥1, we define

VaR(n)
t = min (⌊(1−α)n⌋)

{rt−n+1, rt−n+2, . . . , rt} ,

where ⌊x⌋ and min(k)
{X1, X2, . . . , Xn} denote the largest integer not greater than x and the kth-smallest value amongst the

n data points, respectively.
Since VaRt ’s are not directly observable from the asset price/return series, by adopting the historical simulation approach,

one can replace VaRt in (3) by its historical simulated counterparts VaR(n)
t as shown below:

VaR(n)
t = β0 + β1

VaR(n)
t−1 + et . (4)

Note that although, under the i.i.d. assumption which is implicitly assumed in the historical simulation procedure (see
Hendricks, 1996 and Kuester et al., 2006), the population quantile VaRt should be a constant, since they are unobservable,
their empirical version should conceptually behave like a random walk around the true quantile value. We took a sample
of 1511 daily prices for International Business Machines (IBM), Exxon Mobil Corporation (XOM), the Standard and Poor’s
500 Index (S&P500) and Hangseng Index (HSI) from 2nd January 2008 to 31st December 2013. The corresponding daily
returns were computed as the difference of the log of the prices. Thewidth chosen is 300 days so that the third lowest return
within thewindow corresponds to the historical 99%-VaR estimate. All the numerical results are presented in Table 1, which
summarises the value of the estimated parameters, standard error estimates (in brackets), the adjusted R-square statistics
and the p-values of the associated augmented Dickey–Fuller test. Our numerical experience suggests that the choice of the
window size and/or individual assets does not significantly affect the following conclusion.

It is very tempting to conclude that the historical VaR series follows a random walk model. Standard unit root tests
including Dickey–Fuller test (Dickey and Fuller, 1979; Said and Dickey, 1984) does not reject the hypothesis that β10 = 1 as
specified in (4), where β10 denotes the true value of the regression parameter β1. The following derivation illustrates how
the construction of historical VaR can lead to such spurious random walk model. We use
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