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a b s t r a c t

Wecontrast Pitman closeness and risk evaluations for Bayes procedures in point estimation
and predictive density estimation problems when the mean of the underlying normal
distribution is restricted to be nonnegative. Interesting reversals in preferences arise.
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1. Introduction

Let X ∼ N(θ, σ 2) where θ ≥ 0 and σ 2 is known. We consider point estimation of θ under squared error loss as well
as predictive density estimation of the density of Y ∼ N(θ, τ 2) with τ 2 known under Kullback–Leibler loss and a related
log loss. In each case, we consider the Pitman closeness comparison (Pitman, 1937) of Bayes estimators with respect to
the uniform prior on the unrestricted parameter space (−∞, ∞) and the uniform prior on the restricted parameter space
[0, ∞).

For point estimation comparisons, we consider squared error loss

LS(θ, d) = (d − θ)2. (1)

For predictive density estimation comparisons, we consider Kullback–Leibler loss and log loss. Kullback–Leibler loss for
estimating p(y | θ) by p̂(y | x) is

LKL(p(y | θ), p̂(y | x)) =


p(y | θ) log

p(y | θ)

p̂(y | x)
dy. (2)
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Note that the difference of Kullback–Leibler loss for p̂1(y | x) and p̂2(y | x) is

D(p(y | θ), p̂1(y | x)) − D(p(y | θ), p̂2(y | x)) =


p(y | θ)(− log p̂1(y | x))dy −


p(y | θ)(− log p̂2(y | x))dy.

Therefore, Kullback–Leibler loss is essentially the same as the expectation of − log p̂(y | x) with respect to y ∼ p(y | θ). Log
loss (Grünwald and Dawid, 2004), which has been considered in different settings including data compression, is

Llog(p̂(y | x)) = − log p̂(y | x). (3)

Whereas Kullback–Leibler loss concerns the quality of prediction averaged over y, log loss involves each realization of y
individually.

For a given loss function L(θ, d), the risk of an estimator δ(x) is given by

R(θ, δ) = EθL(θ, δ(x)),

and we say that δ1(x) dominates δ2(x) in risk if

R(θ, δ1) ≤ R(θ, δ2)

for every θ , with strict inequality for at least one value of θ . We say that δ1(x) dominates δ2(x) in terms of Pitman closeness
under the loss L(θ, d) if

Prθ [L(θ, δ1) < L(θ, δ2)] >
1
2

for every θ (Pitman, 1937; Robert et al., 1993). Also, we say that δ1(x) dominates δ2(x) in terms ofmodified Pitman closeness
under the loss L(θ, d) if

Prθ [L(θ, δ1) < L(θ, δ2)] ≥
1
2

for every θ (Nayak, 1990; Khatree, 1992).
Our findings contrastmarkedlywith results of risk comparisons in these settings. For point estimationwith squared error

loss, it is well known (Katz, 1961) that the Bayes estimator with respect to the restricted uniform prior (sometimes called
the Katz estimator) dominates the Bayes estimator with respect to the unrestricted uniform prior. Our results for Pitman
closeness comparison under squared error loss are just the opposite, i.e., the unrestricted Bayes estimator (equivalently
the unrestricted maximum likelihood estimator) dominates the Katz estimator. For predictive density estimation under
log loss, the orderings under risk and under (modified) Pitman closeness are in agreement, i.e., the restricted Bayesian
predictive density dominates the unrestricted Bayesian predictive density. Under Kullback–Leibler loss, although the
restricted Bayesian predictive density dominates in risk, it does not dominate in terms of Pitman closeness.We note that the
results of risk comparison and Pitman closeness comparison become reversed also in variance estimation (Khatree, 1992;
Biau and Yatracos, 2012).

We consider point estimation comparisons in Section 2 while comparisons for predictive densities are considered in
Section 3. We give some concluding remarks in Section 4.

2. Point estimation

Suppose that we have an observation X ∼ N(θ, σ 2) and estimate the parameter θ . The parameter θ is constrained to
θ ≥ 0. In the following, we assume σ 2

= 1 without loss of generality. The unrestricted maximum likelihood estimator is

θ̂I(X) = X,

which is also the Bayes estimator with respect to the uniform prior on (−∞, ∞). The Katz estimator (Katz, 1961) is

θ̂K(X) = X + γ (X) = X +
φ(X)

Φ(X)
, (4)

which is the Bayes estimatorwith respect to the uniformprior restricted to [0, ∞). Here,φ is the probability density function
and Φ is the cumulative distribution function of the standard normal distribution, N(0, 1). Katz (1961) showed that the
Katz estimator is minimax and admissible under quadratic loss. Hence the Katz estimator dominates the unrestricted Bayes
estimator in risk. It is somewhat surprising that the comparison in terms of Pitman closeness favors the unrestricted Bayes
estimator over the restricted Bayes estimator, as is shown in Theorem 1. We use the following lemma in the proof.

Lemma 1. The function γ (u) in (4) satisfies −1 < γ ′(u) < 0. In particular, γ (u) is monotone decreasing.

Proof. See Sampford (1953). �

Theorem 1. θ̂I dominates θ̂K in terms of Pitman closeness under quadratic loss.
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