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a b s t r a c t

Centers and vertices principal component analyses are common methods to explain
variations within multivariate interval data. We introduce multivariate equicorrelated
structures to vertices’ covariance. Assuming the structure, we show equivalence between
centers and vertices methods by proving their eigensystems proportional.
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1. Introduction

Due to recent developments of cheaper and more manageable ways to store large amounts of digital data, in almost all
fields complex data are registered continuously in this big data age. In these situations, it is better to model interval-valued
data, which captures the variability of events, rather than classical data; Bock and Diday (2000) describe many applications.
Principal component analysis (PCA) based on the interval-valued data is an active field over the last ten years. The first
extensions of PCA to the interval-valued data was proposed in Cazes et al. (1997) and Chouakria et al. (1999) as ‘‘vertices
principal component analysis’’ (V-PCA) and ‘‘centers principal component analysis’’ (C-PCA). Although there have beenmany
developments in the area, especially the symbolic sample covariance matrix (Le-Rademacher and Billard, 2011) for symbolic
data, V-PCA, C-PCA and their extensions are still methods that are commonly used to explain the total variances of a set of
interval variables. This paper studies the relationship between the centers and the vertices methods.
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Let us consider a dimension reduction problem for p-variate interval-valued data. Denote I[Y ] an n × p interval-valued
data matrix (Bock and Diday, 2000) such that

I[Y ] =
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11, y
+

11] · · · [y−

1p, y
+

1p]

...
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...
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 ,

where each component is an interval with lower and upper bounds y−

ij and y+

ij , respectively, i = 1, . . . , n, j = 1, . . . , p.
The ith row of I[Y ] pertains to the ith observation unit that is characterized by p (interval-valued) variables, and treated as
a p-dimensional hyper-rectangle with randomly distributed single values inside, i = 1, . . . , n.

The generic interval I[y]ij can be expressed by the couple {ycij, y
r
ij}, where ycij =

1
2 (y
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ij ) and yrij =
1
2 (y

+

ij −y−

ij ) represent
the center and radii of the interval I[y]ij, respectively. The C-PCA method transforms the interval-valued data matrix into a
new single valued matrix—center of the interval at hand. Thus, C-PCA method performs PCA on the n × p numerical matrix

YC-PCA =

yc11 · · · yc1p
...

. . .
...

ycn1 · · · ycnp

 . (1)

However, it indicates that C-PCA studies between-hyper-rectangle variation only. In order to model the additional within-
hyper-rectangle variation terms that are summarized in yrij (though these terms differ from the correct within variation
values, see e.g., Le-Rademacher and Billard, 2012), V-PCA was proposed by using all vertices of the hyper-rectangle defined
by the intervals of all variables for each observation. In V-PCA, each interval valued row in I[Y ] is transformed to a (2p

× p)-
dimensional numerical matrix YV ,i as follows

YV ,i =
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such that each row in YV ,i refers to one vertex of the ith hyper-rectangle. By stacking one below the other the matrices YV ,i’s
i = 1, . . . , n, we get the new numerical-valued (n2p

× p)-dimensional data matrix YV-PCA as

YV-PCA =

Y ′

V ,1 · · · Y ′

V ,n
′

. (3)

The classical V-PCA (Cazes et al., 1997) performs PCA on the data matrix YV-PCA directly, where the matrix is treated
as though it represents p-variate data with n2p independent observations. Unfortunately, this assumption of independent
vertices may be problematic. Since the 2p rows of YV ,i are from the same observation unit, and therefore are correlated,
i = 1, . . . , n. In the existing literature, Le-Rademacher and Billard (2012) presented covariance structure for interval-valued
observations. Also, assuming that the valueswithin an interval are uniformly distributed across interval, Bertrand andGoupil
(2000) derived the samplemean and sample variance, and Billard (2008) derived the covariance for such a covariancematrix.
Billard et al. (2011) derived maximum likelihood estimators (MLEs) for bivariate interval-valued data, which provide the
theoretical backing for the so-called symbolic covariance matrix. Le-Rademacher and Billard (2011) derived the likelihood
functions and some MLEs for symbolic data using the symbolic sample covariance matrix.

No matter whether the dependency between vertices is considered, the dimension of the data in the vertices method
increases exponentially with the number of variables. In order to eliminate this ‘curse of dimensionality’ that affects V-PCA,
Lauro and Palumbo (2000) suggested to map YV-PCA into a n-dimensional vector space spanned by the normalized ranges of
the intervals. In this way the total number of rows is reduced from n2p to n. Douzal-Chouakria et al. (2011) proposed to use
two surrogate variables for each interval variable, viz., the interval endpoints. That is, the interval variable [y−

ij , y
+

ij ] ∀ i =

1, . . . , n, j = 1, . . . , p is replaced by two variables y−

ij and y+

ij , then a standard principal component analysis can be
performed on the resulting n × 2p classical dataset. Douzal-Chouakria et al. (2011) also proposed another possible way
to accommodate intervals of differing lengths by replacing each interval variable via two surrogate variables, viz., the mid
point and range variables. See also, Lauro and Palumbo (2000), and Palumbo and Lauro (2003).

We consider the correlation within vertex data and reduce its redundancy in a different manner. Giordani and Kiers
(2006, p. 385) mentioned ‘‘C-PCA does not exploit all the available information in detecting the underlying structure of the
data’’. One has to accomplish PCA for interval data by taking centers and radii variables together to calculate the percent
and percent cumulative eigenvalues. Otherwise, some part of the total variance would be unaccountable. To circumvent
this Roy (submitted for publication) proposed a two-stage PCA, called centers-coupled-with-radii PCA (CCR-PCA),
using multivariate equicorrelated and jointly equicorrelated covariance structures (Leiva, 2007), also referred to as blocked
compound symmetry (BCS) covariance structures, and used adjusted percent eigenvalues and adjusted percent cumulative
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