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a b s t r a c t

Given an i.i.d. sample of an R × R-valued random vector (X, Y ), we estimate the location
and the size of the maximal jump of the piecewise continuous regression functionm(x) =

E{Y |X = x}. The proposed estimates are shown to converge almost surely to the maximal
jump point under weak conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let (X, Y ), (X1, Y1), (X2, Y2) . . . be independent and identically distributed random variables with values in R × R.
Assume E|Y | < ∞, let m(x) = E{Y |X = x} be the so-called regression function, and let µ = PX be the distribution of
the design variable X . Assume that m is uniformly continuous except for finitely many jump points, i.e., assume that there
exist N ∈ N, z1, . . . , zN ∈ R and L : R+ → R+ such that L(h) → 0 (h → 0) and for all x, y ∈ R, x < y with the property
that [x, y] does not contain any of the z1, . . . , zN we have

|m(x) − m(y)| ≤ L(|x − y|).

In this paper we consider the problem of estimating the location and the size of the maximal jump ofm. More precisely,
let

m+(x) = lim
h→0,h>0

m(x + h) and m−(x) = lim
h→0,h>0

m(x − h)

be the right-hand and left-hand limits ofm. Then

∆(z) = |m+(z) − m−(z)|

is the size of the jump of m at z. Let [a, b] be the support of X , which we assume to be a compact interval, and denote by z∗

the location of the jump with the maximal size within (a, b), i.e.,

∆ := ∆(z∗) = sup
z∈(a,b)

∆(z). (1)
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Given the data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

we want to construct estimates

∆̂n = ∆̂n(Dn) and ẑn = ẑn(Dn)

such that

∆̂n → ∆ a.s.

and

ẑn → z∗ a.s.

as n → ∞.
Of course, the last convergence will be only possible in case that z∗ is unique.
The most popular estimates for nonparametric regression include kernel regression estimate (cf., e.g., Watson, 1964,

Stone, 1977 or Devroye and Krzyżak, 1989), partitioning regression estimate (cf., e.g., Beirlant and Györfi, 1998), nearest
neighbor regression estimate (cf., e.g., Devroye et al., 1994, or Zhao, 1987), local polynomial kernel estimates (cf., e.g., Stone,
1982), least squares estimates (cf., e.g., Lugosi and Zeger, 1995) or smoothing spline estimates (cf., e.g., Kohler and Krzyżak,
2001). The main theoretical results are summarized in the monograph by Györfi et al. (2002). Modifications of several of
these estimates have already been applied to jump point regression in a random design setting in various papers. E.g., rate of
convergence results have been derived inGijbels et al. (1999) andMa andYang (2011), a data-driven choice of the bandwidth
of kernel based jump point estimators has been investigated in Gijbels and Goderniaux (2004a), and jump points of the
derivative of a regression function have been estimated in Gijbels and Goderniaux (2004b). But most papers for jump point
regression derive results in the fixed design regression setting, see, e.g., Desmet and Gijbels (2011), Gijbels et al. (2007), Jose
and Ismail (2001) orWu and Chu (1993) and the literature cited therein. Related techniques are also applied in change point
estimation in connectionwith time series, see, e.g., Carlstein (1988), Hariz et al. (2007), Lee (2011) or Rafajłowicz et al. (2010).

In this paper we consider a standard kernel estimate of∆(z), and the aim is to derive consistency results for this estimate
under much more general conditions than usually considered in the literature, in particular we avoid any assumptions
stipulating that the distribution of the design has a density with respect to the Lebesgue–Borel measure. If we want to
avoid this assumption, we could use techniques fromDevroye (1978a,b) and try to construct estimates ofm+ andm− which
are consistent in the supremum norm whenever the distribution of X has the property that the probability of an interval is
always greater than or equal to a constant times the length of the interval. However, in this paperwewant to avoid even such
an assumption. The key trick which allows us to derive consistency results for the estimates under even weaker conditions
is that we use a data-dependent modification of the bandwidth of the kernel estimates: we start with some fixed value
depending on the sample size and increase it until the intervals to the left and to the right of the point considered contain
enough data points. We show consistency of our method under rather weak conditions: we assume that the regression
function is uniformly continuous except for finitely many jump points, that the support of X is a compact interval and that
Y satisfies some rather weak integrability condition. We prove that our estimates are strongly consistent in a sense that the
estimates of the maximal jump size and of the jump point converge almost surely to the true values provided the sample
size goes to infinity.

1.1. Notation

Throughout this paper we use the following notations: µ denotes the distribution of X and m(x) = E{Y |X = x} is the
regression function of (X, Y ).

Let D ⊆ R and let f : R → R be a real-valued function defined on R. We write x = argmaxz∈D f (z) if maxz∈D f (z) exists
and if x satisfies

x ∈ D and f (x) = max
z∈D

f (z).

For A ⊆ R let IA be the indicator function of A, i.e.,

IA(x) :=


1 if x ∈ A,
0 if x ∉ A,

for x ∈ R. Furthermore we define

log+ z :=


log(z) if z ≥ 1,

0 if z < 1,

for z ∈ R+.

1.2. Outline

The definition of the estimates are given in Section 2, the main result is formulated in Section 3 and proven in Section 4.
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