ELSEVIER

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Characteristic function of the positive part of a random variable and related results, with applications

Josif Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA

ARTICLE INFO

Article history: Received 14 January 2015 Received in revised form 18 February 2015 Accepted 18 July 2015 Available online 30 July 2015

MSC: primary 60E10 secondary 44A15 60G50 90B22 91G20

Keywords: Characteristic function Positive part Random variable Random walks Spitzer's identity Call and put options

ABSTRACT

Let X be an arbitrary real-valued random variable (r.v.), with the characteristic function (c.f.) f. Integral expressions for the c.f. of the r.v.'s $\max(0,X)$ in terms of f are given, as well as other related results. Applications to stock options and random walks are presented. In particular, a more explicit and compact form of Spitzer's identity is obtained.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The positive part, $X_+ := 0 \lor X = \max(0, X)$, of a random variable (r.v.) X arises in various contexts, including inequalities and extremal problems in probability, statistics, operations research, and finance; see e.g. Spitzer (1956), Pinelis (1994), Bentkus (2004) and Pinelis (2014a,b) and further references therein. In particular, in finance $(S - K)_+$ is the value of a call option with strike price K when the underlying stock price is S. Also, the absolute value of a r.v. is easily expressible in terms of the positive-part operation: $|X| = X_+ + X_-$, where $X_- := (-X)_+$. Motivated by different needs and using rather different methods, Brown (1970) and Pinelis (2011) provided various expressions for the power moments $E(X_+^p) = 0$ of the positive part X_+ in terms of the Fourier or Fourier–Laplace transform of (the distribution of) X.

However, expressions for the characteristic function (c.f.) f_{X_+} of the r.v. X_+ in terms of the c.f. f_X of X appear to be absent in the existing literature. Here such expressions are provided, as well as related ones. We also include applications to stock options and random walks. In particular, a more explicit and compact form of Spitzer's identity is obtained.

2. Basic results

Let X be any real-valued r.v., and let then $f = f_X$ denote the characteristic function (c.f.) of X, so that $f(t) = E e^{itX}$ for all

$$(J_a f)(t) := \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{-iua} f(t+u) \frac{du}{u} \tag{1}$$

$$= \frac{1}{4\pi i} \int_{-\infty}^{\infty} \left[e^{-iua} f(t+u) - e^{iua} f(t-u) \right] \frac{du}{u}. \tag{2}$$

Here and subsequently, $a, b, s, t, u, x, \alpha, \beta, \gamma$ stand for arbitrary real numbers (unless otherwise specified) and the integral $\int_{-\infty}^{\infty}$ is understood in the principal-value sense, so that

$$(J_a f)(t) = \lim_{\varepsilon \downarrow 0, A \uparrow \infty} (J_{a;\varepsilon,A} f)(t), \tag{3}$$

where

$$(J_{a;\varepsilon,A}f)(t) := \frac{1}{2\pi i} \int_{s} e^{-iua} f(t+u) \frac{du}{u} \quad \text{and} \quad \int_{s} = \int_{s}^{A} + \int_{-A}^{-\varepsilon} . \tag{4}$$

The equality in (2) follows by the change of the integration variable $u \mapsto -u$. Because of the singularity of the integrand in (1) at u = 0, the expression of $(I_n f)(t)$ in (2) will usually be more convenient in computation than the expression of $(I_n f)(t)$ in (1). By the same change of the integration variable, one has the following parity property of the transformation I_a :

$$(J_a f)(-t) = -(J_{-a} f^{-})(t),$$
 (5)

where $f^-(u) := f(-u)$ for all real u. Of course, if f is a c.f., then $f^- = \bar{f}$, where, as usual, the horizontal bar above the symbol denotes the complex conjugation.

Clearly, one may also write

$$(J_a f)(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} [e^{-iua} f(t+u) - f(t)] \frac{du}{u}.$$

Moreover, in place of $\frac{1}{4\pi i}\int_{-\infty}^{\infty}$ in (2) one may write $\frac{1}{2\pi i}\int_{0}^{\infty}$, where $\int_{0}^{\infty}:=\lim_{\varepsilon\downarrow 0,\,A\uparrow\infty}\int_{\varepsilon}^{A}$. We shall now see that the integral in (1) always exists — as long as f is a c.f.; moreover, the value of $(J_af)(t)$ is no greater than $\frac{1}{2}$ in modulus. In fact, one has the following basic proposition.

Proposition 1. One has

$$(J_a f)(t) = \frac{1}{2} \operatorname{E} e^{itX} \operatorname{sign}(X - a). \tag{6}$$

Moreover, for all r.v.'s X, all a, and all ε and A such that $0 < \varepsilon < A < \infty$

$$\left| \left(J_{a;\varepsilon,\mathcal{A}} f)(t) \right| < 1. \tag{7}$$

Proof of Proposition 1. Consider first the (extreme) case when the real-valued r.v. X takes only one value, say x. Then

$$(J_a f)(t) = \frac{e^{itx}}{2\pi i} \int_{-\infty}^{\infty} e^{iu(x-a)} \frac{du}{u} = \frac{e^{itx}}{2\pi} \int_{-\infty}^{\infty} \frac{\sin u(x-a)}{u} du = \frac{1}{2} e^{itx} \operatorname{sign}(x-a),$$

so that (6) holds in this case. Similarly, still in this same extreme case

$$2\pi |(J_{a;\varepsilon,A}f)(t)| = \left| \int_{\varepsilon,A} \frac{\sin u(x-a)}{u} du \right| \leqslant \int_{-\pi}^{\pi} \frac{\sin v}{v} dv < \int_{-\pi}^{\pi} dv = 2\pi,$$

so that (7) holds in this case as well. It remains to use Fubini's theorem to obtain (6) and (7) in general. \Box

Consider the r.v.

$$X_+ := 0 \lor X = \max(0, X),$$

the positive part of the r.v. X. In view of the obvious identity

$$2e^{itX_{+}} = 1 + e^{itX} + e^{itX}\operatorname{sign}X - \operatorname{sign}X, \tag{8}$$

one immediately obtains the following corollary of Proposition 1, which gives an expression of the c.f. of X_+ in terms of the c.f. of *X*.

Download English Version:

https://daneshyari.com/en/article/1154366

Download Persian Version:

https://daneshyari.com/article/1154366

<u>Daneshyari.com</u>