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a b s t r a c t

We show that the supremum distance between the cumulative distribution of the convex
LSE and an arbitrary distribution function F with a convex pmf on N is at most twice the
supremum distance between the empirical distribution function and F .
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1. Introduction

1.1. A brief overview

The first Marshall’s inequality goes back to Marshall (1970). It states that ifFn is the least concave majorant (LCM) of the
empirical distribution functionFn, then ∥Fn−F∥∞ ≤ ∥Fn−F∥∞ for an arbitrary concave distribution function F . Here, all the
distributions involved are supported on [0, ∞). The proof of this inequality is rather elementary and uses basic properties
of the LCM. When F is the true distribution function with a decreasing density f supported on a compact real interval and
assumed to be continuously differentiable with a strictly negative derivative, Kiefer and Wolfowitz (1976) showed that the
global rate of convergence of ∥Fn − Fn∥∞ is of order n−2/3 log(n) almost surely. In convex density estimation, twoMarshall-
type of inequalities have been established for the convex least squares estimator (LSE) of a density on [0, ∞) defined
by Groeneboom et al. (2001). Let F be an arbitrary distribution function on [0, ∞) such that F ′ is convex, Fn the empirical
distribution function,Fn the cumulative distribution of the LSE,Hn =


·

0
Fn(s)ds, Hn =


·

0 Fn(s)ds and H =


·

0 F(s)ds respec-
tively. Then, Dümbgen et al. (2007) and Balabdaoui and Rufibach (2008) showed that ∥Fn − F∥∞ ≤ 2 ∥Fn − F∥∞, and ∥Hn −

H∥∞ ≤ ∥Hn − H∥∞ respectively. Those results were used by Balabdaoui and Wellner (2007) to show Kiefer–Wolfowitz-
type of inequalities. Specifically, they show that when F is the true distribution such that f = F ′ is twice continuously
differentiable with f ′′ > 0, ∥Fn − Fn∥∞ and ∥Hn − Hn∥∞ are respectively of order (n−1 log(n))3/5 and (n−1 log(n))4/5.

1.2. Discrete versus continuous

In both the monotone and convex estimation problems, the Kiefer–Wolfowitz-type of inequalities recalled above clearly
suggest that if one is ready to assume that the true density or its derivative does not admit any flat part on its support, then
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the empirical and constrained estimators for the unknown distribution function are equivalent for n large enough. In the
discrete setting, this is not true anymore simply because the notion of a strict curvature does not exist in this case. In fact,
with Fn the empirical distribution andFn the cumulative distribution of the LSE studied by Durot et al. (2013) and Balabdaoui
et al. (2014), it can be shownwith similar arguments as for the proof of Theorem 3.2 in Balabdaoui et al. (2014), that (Fn, Fn)
converges jointly, at the rate

√
n, to a quite complicated limiting distribution, so that

√
n(Fn−Fn) converges to a distribution

thatwe conjecture is not degenerate. Hence, it is somehowexpected that the difference betweenFn andFn converges exactly
at the rate 1/

√
n in this case. Although we do not pursue this in this short note, an immediate consequence of our main

theorem is that this difference is atmostOp(1/
√
n) in the supremumnorm. This theoremgives the same formof theMarshall

inequality proved by Dümbgen et al. (2007) for the convex LSE in the continuous setting. Although we re-adapt their idea
of using concavity of the difference between the LSE and the density of F (with respect to the counting measure in our case)
between two successive knot points a < b, our proof does not rely on the equalities Fn(a) = Fn(a) and Fn(b) = Fn(b)
as they are no longer true for the discrete LSE. One has also to deal with discrete sums instead of integrals, which makes
the final inequalities a bit less straightforward to obtain. One of the consequences of this note is to be able to assert that
the convergence rate ofFn to the truth F is the expected rate 1/

√
n, whether F has a finite support or not. In Balabdaoui

et al. (2014), the assumption that F is finitely supported on {0, . . . , S} for some unknown integer S > 0 was made to be
able to establish the limiting distribution of the LSE, the general case being much more complex to handle. However, this
assumption was not at all necessary for Durot et al. (2013) to obtain that ∥pn − p∥k = Op(1/

√
n) for all k ∈ [2, ∞], wherepn and p are respectively the convex discrete LSE and the true probability mass function (pmf). However, for k = ∞, the

transition from this result to showing that ∥Fn − F∥∞ = Op(1/
√
n) is not immediate unless F admits a finite support.

The Marshall lemma established in this note alleviates any existing doubt that the parametric convergence rate holds true
independently of the nature of the support of the true convex pmf.

2. Marshall inequality

Based on a n-sample from a convex discrete probability mass function (pmf) on N, letpn denote the discrete convex LSE
of the pmf as defined by Durot et al. (2013). We recall that the points in N\{0} wherepn changes its slopes are called knots,
and that the characterization ofpn is given by

z−1
x=0

Fn(x)


≥

z−1
x=0

Fn(x), z ∈ N\{0}

=

z−1
x=0

Fn(x), if z is a knot of pn, (2.1)

where Fn is the empirical distribution function andFn is the distribution function corresponding topn, see Proposition 2.1
in Balabdaoui et al. (2014). In the sequel, F is a distribution function on N with corresponding pmf, p, that is decreasing and
convex on N. We denote by Kn the set consisting of the point 0 and all knots ofpn and by p̄n the empirical pmf, that is the
pmf corresponding to Fn. We start with the following result.

Lemma 2.1. For τ ∈ Kn, we have Fn(τ − 1) ≤ Fn(τ − 1) and 0 ≤ Fn(τ ) − Fn(τ ) ≤pn(τ ) − p̄n(τ ).

Proof. First, suppose that τ ≥ 2. From the characterization in (2.1), it follows that

τ−1
k=0

Fn(k) =

τ−1
k=0

Fn(k) (2.2)

τ−2
k=0

Fn(k) ≥

τ−2
k=0

Fn(k). (2.3)

Then, (2.2) –(2.3) yieldsFn(τ − 1) ≤ Fn(τ − 1). Likewise, (2.2) combined to (2.1) with z = τ + 1 yields Fn(τ ) ≤ Fn(τ ). As
the inequalityFn(τ −1) ≤ Fn(τ −1) can be rewritten under the alternative form Fn(τ ) ≤ Fn(τ )+pn(τ )− p̄n(τ ), this gives
the result for τ ≥ 2.

If τ = 1, then the equality in (2.2) gives the first claimed inequality of the lemmaFn(0) = Fn(0). Combined with the
inequality in (2.1) with z = 2, this yields the second claimed inequality of the lemma, that is, Fn(1) ≤ Fn(1) = Fn(1) +pn(1) − p̄n(1).

Finally, if τ = 0, thenFn(−1) = Fn(−1) = 0 and (2.1) with z = 1 yields 0 ≤ Fn(0) − Fn(0) = pn(0) − p̄n(0) which
completes the proof of the Lemma. �

In what follows, we will establish two important inequalities linking the extrema ofFn − F to those of Fn − F .

Proposition 2.2. We have

max
x∈N

Fn(x) − F(x)


≤ 2max
x∈N

Fn(x) − F(x)
 (2.4)
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