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a b s t r a c t

We propose two versions of asymptotically distribution free empirical processes. When a
composite null hypothesis contains a family of distributions indexed by a one dimensional
parameter space, and when that single parameter is estimated by maximum likelihood,
the resulting distribution free goodness of fit tests are simpler than tests applying
the Khmaladze transformation. For the Pareto distribution, the process we advocate is
especially simple. The theory is illustrated by fitting the Pareto distribution to threshold
exceedances of stock returns, and the Weibull distribution to fibre strength data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The distribution free testing of goodness of fit of empirical data against a simple null hypothesis, under which the data
is assumed to arise from a distribution function of the form Fθ (x), and with the parameter θ known, is a reasonably familiar
process. The extension of the test to composite null hypotheses, however, for which θ ∈ Θ for some set Θ , has proved
elusive: replicating the simpler test using the estimatedθ in place of the true θ is not satisfactory, in that the standard
statistics, such as the Kolmogorov–Smirnov, Anderson–Darling and chi-squared statistics, have distributions which depend
on the family Fθ (x), and generally on the specific values ofθ and θ .

A standard way to effect distribution free goodness of fit tests for a composite null hypothesis is to apply the Khmaladze
transformation (Khmaladze, 1981).While this transformation is finding increasing use in practice, the computations depend
on the particular family Fθ (x) concerned, and may be complicated; and bootstrap procedures for more general estimators
of θ may not be any simpler.

When there is but a single parameter to be estimated, and that parameter is estimated by maximum likelihood, then we
provide two relatively simple distribution free processes for goodness of fit testing of a distribution. Two Brownian bridges
are found, in different times, for which the standard statistics listed above may be applied as if one were testing a simple
null hypothesis.

After some definitions and preliminaries, in Section 3 we mimic an approach taken for vector valued θ in Khmaladze
(1981, p. 250). We consider an empirical process using a slightly unconventional centring (see (2)), and show that a certain
function of this process is asymptotically a Brownian bridge in a particular time when the composite null hypothesis is valid.
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The final theoretical section is Section 4, in which wemake use of Khmaladze’s recent theory of the q-projected F-Brownian
motion to ‘rotate’ the first Brownian bridge found to obtain a Brownian bridge in the simpler time Fθ (x).

The penultimate Section 5 considers applications, the first testing the validity of the customary usage of the Pareto
distribution to model threshold exceedances of daily stock returns, from which the particularly simple form for the Pareto
of the processes introduced will be apparent. The second application tests the goodness of fit of a Weibull distribution to
fibre strength, utilising data in Smith and Naylor (1987), which is followed by a short conclusion.

2. The empirical process and a variant

For testing goodness of fit of data against a simple null hypothesis, viz. a distribution function of the form Fθ (x) with
specified θ , one conventionally defines

vn(x, θ) =
1

√
n

n
i=1


1{Xi≤x} − Fθ (x)


=

√
n [Fn(x)− Fθ (x)] (1)

in which X1, X2, . . . , Xn is an independent and identically distributed sample from the distribution function Fθ (x); 1 is the
indicator function; and Fn(x) is the empirical distribution function. As n → ∞, vn(x, θ) tends to a Brownian bridge in time
Fθ (x); and thence leading, by a transformation of the time, to the standard distribution free tests of goodness of fit of the
simple null hypothesis.

In like vein, using a different centring we define

wn(x, θ) =
√
n

Fn(x)−

 x

−∞

1 − Fn(y)
1 − Fθ (y)

dFθ (y)

. (2)

The processwn(x, θ) tends to a Brownianmotion in time Fθ (x) as n → ∞, and again leads to standard distribution free tests
of goodness of fit of a simple null hypothesis. Although less common than the conventional centring in (1), the centring used
in (2) may be more appealing for studies in survival analysis, in which there is a primary interest in the hazard rate or force
of mortality.

2.1. Mathematical preliminaries

We assume that all distributions are absolutely continuous, with density f (x, θ) = F ′(x, θ). We set
•

F(x, θ) = (∂/∂θ)
F(x, θ), and write interchangeably F(x, θ) and Fθ (x), with analogous notational conventions being used throughout the
paper. In addition to standard regularity conditions, allowing us to differentiate under integral signs, etc., we assume that
•

F θ (x)/
√
1 − Fθ (x) → 0 as x → ∞, for each θ ∈ Θ , a condition easily verified for the Pareto and Weibull distributions.

Denoting the score function by ψθ (x), the Fisher information, denoted by Γ (θ), is given by

Γ (θ) = −E

∂2

∂θ2
ln f (x, θ)


= −E

•

ψθ (x) = Eψ2
θ (x).

It is convenient to define hθ (x) = ψθ (x)/
√
Γ (θ); and we further define

Hθ (x) =

 x

−∞

hθ (y) dFθ (y) =
1

√
Γ (θ)

 x

−∞

•

f θ (y) dy =

•

F θ (x)
√
Γ (θ)

(3)

noting that Hθ (∞) = 0 and


∞

−∞
h2
θ (x) dFθ (x) = 1. Finally (Cramer, 1946, Chapter 3)

√
n(θn − θ) =

1
√
Γ (θ)


∞

−∞

h(x, θ)vn(dx, θ)+ oP(1). (4)

2.2. From the first centring to the second

A standard result linking a Brownian bridge vn(x, θ) and a Brownian motion wn(x, θ) in time Fθ (x) states that (Shorack
and Wellner, 1986; Khmaladze, 1981)

dvn(x, θ) = −fθ (x)dx
 x

−∞

wn(dy, θ)
1 − Fθ (y)

+ wn(dx, θ).

Substituting this expression into the integral in (4) yields
∞

−∞

hθ (x) dvn(x, θ) = −


∞

−∞

dHθ (x)
 x

−∞

wn(dy, θ)
1 − Fθ (y)

+


∞

−∞

hθ (x) wn(dx, θ). (5)
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