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a b s t r a c t

A central limit theorem for a linear combination of all the maximum likelihood estimators
with an increasing dimension in maximum entropy models for network data, has been
established. Simulation studies illustrate the asymptotic results.
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1. Introduction

The degrees of the vertices of the corresponding graphs preliminarily reflect the summarized information of network
structures and have been studied by many authors recently. See Blitzstein and Diaconis (2010), Chatterjee et al. (2011),
Chung and Lu (2002), Hillar andWibisono (2013), Janson (2010), Olhede andWolfe (2012), Perry andWolfe (2012), Rinaldo
et al. (2013) and Zhao et al. (2012). If one only considers the distributions of degrees, a typical realization is putting the degree
sequence, i.e., a vector combined by the degrees of all vertices, as the exclusively sufficient statistics for the exponential
family distributions. It is called the β-model by Chatterjee et al. (2011) for binary edges (i.e., edges with only two status,
‘‘present’’ or ‘‘absent’’), an undirected version of the p1 model for directed graphs byHolland and Leinhardt (1981).Motivated
by applications to neuron science, Hillar andWibisono (2013) have generalized it toweighted (discrete or continuous) edges
according to the maximum entropy principle, which will be named ‘‘maximum entropy network models’’ hereafter. These
models are useful to reconstruct the network in a situation such as sexually transmitted disease networks, in which only
the information of the degree sequence is available due to privacy protection (e.g., Helleringer and Kohler, 2007).

A notable characterization of the maximum entropy network models is that each vertex is assigned an intrinsic
parameter, called ‘‘potential’’ by Hillar and Wibisono (2013), which measures the strength of that vertex to form network
connections. As the size of networks increases, the number of parameters goes to infinity, making asymptotic analysis
challenging (Fienberg, 2012). The asymptotic properties of the maximum likelihood estimators (MLEs) have been little
known until recently. As the number of parameters goes to infinity, the MLE has been proved to be uniformly consistent by
Chatterjee et al. (2011) in the β-model and by Hillar and Wibisono (2013) in the maximum entropy network models; Yan
and Xu (2013) and Yan et al. (2015) derived the asymptotic normality for a fixed number of the MLEs. A natural question
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appears. Is there similar results for a diverging number of theMLEs? This paper aims to solve this problem.Wewill establish
the central limit theorem for a linear combination of all the MLEs given a sequence of real valued coefficients when the
number of parameters goes to infinity. Obviously, the previous results on the fixed number of the estimators is a specific
case of the latter. For the remaining part of this paper, we proceed as follows. In Section 2, we have presented the main
results. Simulation studies are given in Section 3. We made some discussion in Section 4. All proofs are relegated to online
supplementary material (see Appendix A).

2. Main results

Consider an undirected graph G with no self-loops on n vertices labeled by ‘‘1, . . . , n’’. Let aij be the weight of edge (i, j)
taking values from the set Ω , where Ω could be a finite discrete, infinite discrete or continuous set, and aij = aji. We set
aii = 0 (i = 1, . . . , n) for convenience. The symmetric matrix a = (aij)ni,j=1 is called the adjacent matrix of the graph G.
Denote di =


j≠i aij by the degree of vertex i, and d = (d1, . . . , dn)T by the degree sequence of G. Let S be a σ -algebra over

the set Ω . Assume that there is a canonical σ -finite probability measure ν on (Ω, S). If Ω is discrete, then ν is the counting
measure; if Ω is continuous, then ν is the Borel measure. Let ν( n

2 ) be the product measure on Ω( n
2 ). The maximum entropy

network models assume that the probability density function of a = (aij)ni,j=1 with respective to ν( n
2 ) has the exponential

form with the degree sequence as natural sufficient statistics, i.e.,

pθ (a) = exp

−θTd − z(θ)


, (1)

where z(θ) is the normalizing constant and θ = (θ1, . . . , θn)
T is the parameter vector. Remark that we use −θ in the

parameterization instead of the classical θ since it will simplify the notations in the later presentation. Model (1) implies
that the edges aij, 1 ≤ i < j ≤ n are mutually independent.

Letθ = (θ̂1, . . . , θ̂n)
T be theMLE of θ = (θ1, . . . , θn)

T and {ci}∞i=1 be a fixed sequence. Denote Vn by the Fisher information
matrix of the vector parameter θ. In order to solve the asymptotic distribution of (θ̂1, . . . , θ̂r)

T with a fixed r , Yan et al.
(2015) have obtained an approximate inverse of Vn to derive its approximately explicit expressions as a function of the
vertex degrees di, i = 1, . . . , r . Here, the approximate inverse is used for representing the linear combination of all the
MLEs as a function of the linear combination of all the degrees to derive its asymptotic distribution. Details are given in
online supplementary material (see Appendix A). Consider the condition:

∞
i=1

|ci| < ∞. (2)

The above condition implies


∞

i=1 c
2
i < ∞ that is common in the study of asymptotic distributions for a weighted sum of

a sequence of independent random variables (e.g. Theorem 4.2 of Billingsley, 1968; Chow and Lai, 1973). The central limit
theorems for the linear combination of all the MLEs in the cases of finite discrete, continuous and infinite discrete are given
in the following three subsections, respectively.

2.1. Finite discrete weights

In this subsection, we assume that network edges take values from the set Ω = {0, 1, . . . , q − 1} with q a fixed integer.
In this case, the edge weights aij for all i ≠ j are independently multinomial random variables with the probability:

P(aij = a) =
ea(θi+θj)

q−1
k=0

ek(θi+θj)

, a = 0, 1, . . . , q − 1.

This model is a direct generalization of the β-model for dichotomous edges. The normalizing constant is

z(θ) =


1≤i<j≤n

log
q−1
a=0

e−(θi+θj)a,

and the parameter space is Θ = Rn. By direct calculations, Vn has the following representation:

vij =


0≤k<l≤q−1

(k − l)2e(k+l)(θi+θj)

q−1
a=0

ea(θi+θj)

2 , i, j = 1, . . . , n; i ≠ j, vii =

n
j=1;j≠i

vij. (3)

Following Hillar andWibisono (2013), we assume that max1≤i≤n |θi| is bounded by a constant. The central limit theorem for
the linear combination of all the estimators is stated as follows, whose proof is built on the work of Yan and Xu (2013) and
Yan et al. (2015) and relegated to online supplementary material (see Appendix A).
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