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a b s t r a c t

A general class of linearly extrapolated variance estimators was developed as an extension
of the conventional leave-one-out jackknife variance estimator. In the context of U-statistic
variance estimation, the proposed variance estimator is first-order unbiased. After showing
the equivalence between the Hoeffding decomposition (Hoeffding, 1948) and the ANOVA
decomposition (Efron and Stein, 1981), we study the bias property of the proposed variance
estimator in comparison to the conventional jackknifemethod. Simulation studies indicate
that the proposal has comparable performance to the jackknifemethodwhen assessing the
variance of the sample variance in various distributions. An application to half-sampling
cross-validation indicates that the proposal is more computationally efficient and shows
better performance than its jackknife counterpart in the context of regression analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Variance measures the uncertainty of a random variable. Therefore, variance estimation is crucial in evaluating the
performance of a point estimator or a statistical methodology. Nowadays, one of the commonly used variance estimation
techniques is the leave-one-out jackknife variance estimator (Quenouille, 1949; Tukey, 1958). Denote the parameter of
interest as θ . Given an i.i.d. sample of size n, X1, . . . , Xn, the jackknife variance estimator for statistic θ̂ = T (X1, . . . , Xn) is
defined as

V̂J =
n − 1
n

n
i=1

(T−i
n−1 − T̄n−1)

2, (1.1)

where T−i
n−1 = T (X1, . . . , Xi−1, Xi+1, . . . , Xn) and T̄n−1 = n−1n

i=1 T
−i
n−1.

Efron and Stein (1981) consider the jackknife variance estimator as a linearly extrapolated estimator: one first constructs
a variance estimator at subsample size n − 1 using

n
i=1(T

−i
n−1 − T̄n−1)

2, and then extrapolates it from n − 1 to the original
sample size n by multiplying (n − 1)/n. Following the footsteps of Efron and Stein (1981), we consider an extension of
the conventional jackknife methodology. The main contribution of this paper is the proposal of a general class of linearly
extrapolated variance estimators and the investigation of its bias property. We also demonstrate an application of the
proposed variance estimator in half-sampling cross-validation.

The new methodology can be summarized as follows: we first devise a variance estimator at subsample size m (m < n)
and then extrapolate it fromm to n using linear approximation. In the context of U-statistic variance estimation, an unbiased
variance estimator at size m can be obtained as long as the kernel size k ≤ m ≤ n/2 (see Section 2). Then, the bias in the
linearly extrapolated variance estimator can be formally evaluated. We prove in Section 3 the equivalence between the
Hoeffding decomposition (Hoeffding, 1948) and the ANOVA decomposition (Efron and Stein, 1981), which facilitates the
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comparison between the proposed variance estimator and the leave-one-out jackknife variance estimator. We show in
Section 3 that both estimators are first-order unbiased, and their biases can be expressed explicitly. We demonstrate the
performance of the proposal in comparison to the jackknife method in two simulation studies in Section 4. The proposed
variance estimator shows comparable performance to jackknife method in a simulation study that assesses the variance of
the unbiased sample variance. The proposal seems to outperform the jackknife estimatorwith high computational efficiency
in the context of half-sampling cross-validation. It can be seen in Section 4.2 that the flexibility of choosing subsample size
m (m ≤ n/2) in the proposed variance estimator leads to efficient realization of the cross-validation algorithm. In the end,
we conclude our paper with some final remarks and discussions.

2. Linearly extrapolated variance estimator

Given an i.i.d. sample of size n, a U-statistic (Hoeffding, 1948) is defined as

Un =

n
k

−1 
1≤i1<···<ik≤n

φ(Xi1 , . . . , Xik), (2.1)

where φ(x1, . . . , xk) is a symmetric kernel function with k components. It is an unbiased estimator for the parameter
θ = E{φ(X1, . . . , Xk)}. Asmost unbiased point estimators can bewritten as a U-statistic, throughout this paperwewill focus
on the problem of U-statistic variance estimation. However, the proposed variance estimator can be easily generalized to
other statistics that do not have a U-statistic representation.

Hoeffding (1948) derives the closed-form expression of the variance of a U-statistic. However, calculating the exact vari-
ance is computational expensive, especially when both n and k are large. Moreover, the asymptotic variance of a general
U-statistic (see Theorem 7.1 in Hoeffding, 1948) is not necessarily reliable when the kernel size k is not negligible compared
to the sample size n. In this paper, we propose a linearly extrapolated variance estimator that is easy to construct and is ap-
plicable as long as k ≤ n/2. In addition, the proposed variance estimator is first-order unbiased in the context of U-statistic
variance estimation, which makes it a valuable competitor of the jackknife variance estimator.

Consider a U-statistic defined in (2.1). For any k ≤ m, let Um be the U-statistic computed based on a subsample of sizem,
say Xm = (X1, . . . , Xm). Denote

Um = Um(X1, . . . , Xm) =

m
k

−1 
1≤i1<···<ik≤m

φ(Xi1 , . . . , Xik).

Theorem 1. Let Un be a U-statistic based on a symmetric kernel φ of size k, where k ≤ m ≤ n/2. Given an i.i.d. sample of size n,
let Sm and S∗

m be mutually exclusive subsamples of size m. Define

V̂m =

 n
m

n − m
m

−1 
(Sm,S∗

m)⊆Xn

{Um(Sm) − Um(S∗
m)}2

2
.

Then, V̂m is an unbiased estimator of Var(Um). The linearly extrapolated variance estimator of Un can be expressed as

V̂ex =
m
n
V̂m (2.2)

which is a first-order unbiased estimator for Var(Un).
Proof. Because Sm and S∗

m are nonoverlapping data subsets of sizem,

E(V̂m) = (1/2)E[{Um(Sm) − Um(S∗

m)}2] = E(U2
m) − {E(Um)}2 = Var(Um).

The unbiasedness of V̂m follows.
To show the first-order unbiasedness of V̂ex, notice that

E(V̂ex) =
m
n
E(V̂m) =

m
n
Var(Um).

Based on the exact formula of a U-statistic variance (Hoeffding, 1948), we have

Var(Um) =

k
j=1


k
j

2 m
j

−1

δ2
j ,

where δ2
j is the variance of the jth orthogonal term in Hoeffding decomposition (Hoeffding, 1948; Lee, 1990).

E(V̂ex) =
m
n

k
j=1


k
j

2 m
j

−1

δ2
j =

k2

n
δ2
1 +

m
n

k
j=2


k
j

2 m
j

−1

δ2
j .

Therefore, V̂ex is a first-order unbiased estimator for Var(Un). �
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