Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Markov limit of line of decent types in a multitype supercritical branching process

Jyy-I Hong*, K.B. Athreya

Iowa State University, United States

ARTICLE INFO

Article history: Received 31 July 2014 Received in revised form 22 October 2014 Accepted 13 November 2014 Available online 12 December 2014

MSC: primary 60J80 secondary 60G50

Keywords: Branching processes Multitype Supercritical Markov

1. Introduction

Let $\mathbf{Z}_n = (Z_{n,1}, Z_{n,2}, \dots, Z_{n,d})$ be the population vector in the *n*th generation, $n = 0, 1, 2, \dots$, where $Z_{n,i}$ is the number of individuals of type *i* in the *n*th generation. We assume that each individual of type *i*, $i = 1, 2, \dots, d$, lives a unit of time and, upon death, produces children of all types according to the offspring distribution $\{p^{(i)}(\mathbf{j}) \equiv p^{(i)}(j_1, j_2, \dots, j_d)\}_{\mathbf{j} \in \mathbb{N}^d}$ and

independently of other individuals, where $p^{(i)}(j_1, j_2, ..., j_d)$ is the probability that a type *i* parent produces j_1 children of type 1, j_2 children of type 2, ..., j_d children of type *d*.

Let $m_{ij} = E(Z_{1,j}|\mathbf{Z}_0 = \mathbf{e}_i)$ be the expected number of type *j* offspring of a single type *i* individual in one generation for any i, j = 1, 2, ..., d. Then,

$$\mathbf{M} \equiv \{m_{ij} : i, j = 1, 2, \dots, d\}$$
(1.1)

is called the offspring mean matrix.

In a discrete-time multi-type positively regular Galton–Watson branching process, by the Perron–Frobenius theorem, the matrix **M** has a maximal eigenvalue ρ and has associated strictly positive normalized right and left eigenvectors $\mathbf{u} = (u_1, u_2, \ldots, u_d)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_d)$ such that

$$\mathbf{u} \cdot \mathbf{v} = 1$$
 and $\mathbf{u} \cdot \mathbf{1} = 1$.

The maximal eigenvalue ρ of the offspring mean matrix **M** plays a crucial role. The process is called a supercritical, critical or subcritical branching process according as $1 < \rho < \infty$, $\rho = 1$ or $\rho < 1$, respectively (see Athreya and Ney, 2004 for the details).

* Corresponding author.

http://dx.doi.org/10.1016/j.spl.2014.11.013 0167-7152/© 2014 Elsevier B.V. All rights reserved.

FISEVIER

ABSTRACT

In a multitype (*d* types) supercritical positively regular Galton–Watson branching process, let $\{X_n, X_{n-1}, \ldots, X_0\}$ denote the types of a randomly chosen (i.e., uniform distribution) individual from the *n*th generation and this individual's *n* ancestors. It is shown here that this sequence converges in distribution to a Markov chain $\{Y_0, Y_1, \ldots\}$ with transition probability matrix $(p_{ij})_{1 \le i,j \le d}$ and having the stationary distribution. We also consider the critical case conditioned on non-extinction.

© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: hongjyyi@gmail.com (J. Hong), kbathreya@gmail.com (K.B. Athreya).

Now, we consider Galton–Watson branching process with a finite offspring mean matrix **M** whose maximal eigenvalue $1 < \rho < \infty$ and with no extinction. Then choose an individual at random, i.e., uniform distribution, from the *n*th generation and denote its type X_n . Let X_{n-1} be the type of its parent, X_{n-2} the type of its grandparent, etc., down to X_0 being the type of the ancestor in the generation 0. We show that, for any integer k, $(X_n, X_{n-1}, \ldots, X_{n-k})$ converges in distribution to (Y_0, Y_1, \ldots, Y_k) where $\{Y_n\}_{n\geq 0}$ is a Markov chain with a unique stationary distribution.

The work of Jagers and Nerman (1996) considers a similar process in a more general setting. However, their principal assumption is that the process has been evolving for an infinite amount of time and is already in a stable state. In this paper, we consider the case when the population has evolving up to n generations and prove a limit result about the types of the ancestors of a random chosen individual as $n \to \infty$. Thus, the work reported here is related to but different from that in Jagers and Nerman (1996).

2. Main results

The first result is for the supercritical case. Without lose of generality, we assume that each individual in this supercritical process produces at least one offspring with probability 1 upon death, that is, $P(\mathbf{Z}_1 = \mathbf{0} | \mathbf{Z}_0 = \mathbf{e}_i) = 0$ for all i = 1, 2, ..., d. Thus, the probability of extinction is 0.

Theorem 2.1. Let $1 < \rho < \infty$, $|\mathbf{Z}_0| = 1$, $E(||Z_1|| \log ||Z_1|| |\mathbf{Z}_0 = \mathbf{e}_i) < \infty$ for any i = 1, 2, ..., d. Then, for any integer $k \ge 0$, there exists a random vector $(Y_0, Y_1, ..., Y_k)$ such that

$$(X_n, X_{n-1}, \ldots, X_{n-k}) \xrightarrow{d} (Y_0, Y_1, \ldots, Y_k) \text{ as } n \to \infty,$$

and, for any $i_0, i_1, \ldots, i_k \in \{1, 2, \ldots, d\}$,

$$P(Y_0 = i_0, Y_1 = i_1, \dots, Y_k = i_k) = \frac{v_{i_k} m_{i_k i_{k-1}} m_{i_{k-1} i_{k-2}} \cdots m_{i_1 i_0}}{(\mathbf{1} \cdot \mathbf{v}) \rho^k}.$$

Moreover, $\{Y_n\}_{n\geq 0}$ is a Markov chain with the state space $\{1, 2, \ldots, d\}$,

(a) initial distribution $\lambda_0 \equiv (\lambda_0(1), \lambda_0(2), \dots, \lambda_0(d))$ where

$$\lambda_0(i) = \frac{v_i}{\mathbf{1} \cdot \mathbf{v}}$$
 for any $i = 1, 2, \dots, d_i$

(b) transition probability $\mathbf{P} \equiv (p_{ij} : i, j = 1, 2, ..., d)$, where

$$p_{ij} = \frac{v_j m_{ji}}{v_i \rho}$$
 for any $n = 0, 1, 2, ...$

(c) and a unique stationary distribution $\boldsymbol{\pi} \equiv (\pi_1, \pi_2, \dots, \pi_d)$ where

$$\pi_i = rac{u_i v_i}{\mathbf{u} \cdot \mathbf{v}}$$
 for any $i = 1, 2, \dots, d$

A similar result also holds for the critical case conditioned on non-extinction:

Theorem 2.2. Let $\rho = 1$, $|\mathbf{Z}_0| = 1$ and $E ||Z_1||^2 < \infty$. Then, for any integer $k \ge 0$, there exists a random vector (Y_0, Y_1, \dots, Y_k) such that

$$(X_n, X_{n-1}, \ldots, X_{n-k}) \Big| |\mathbf{Z}_n| > 0 \xrightarrow{d} (Y_0, Y_1, \ldots, Y_k) \text{ as } n \to \infty,$$

and, for any $i_0, i_1, \ldots, i_k \in \{1, 2, \ldots, d\}$,

$$P(Y_0 = i_0, Y_1 = i_1, \dots, Y_k = i_k) = \frac{v_{i_k} m_{i_k i_{k-1}} m_{i_{k-1} i_{k-2}} \cdots m_{i_1 i_0}}{(\mathbf{1} \cdot \mathbf{v})}.$$

Moreover, $\{Y_n\}_{n\geq 0}$ is a Markov chain with the state space $\{1, 2, ..., d\}$, (a) initial distribution $\lambda_0 \equiv (\lambda_0(1), \lambda_0(2), ..., \lambda_0(d))$ where

$$\lambda_0(i) = \frac{v_i}{\mathbf{1} \cdot \mathbf{v}}$$
 for any $i = 1, 2, \dots, d$,

(b) transition probability $\mathbf{P} \equiv (p_{ij} : i, j = 1, 2, ..., d)$, where

$$p_{ij} = \frac{v_j m_{ji}}{v_i}$$
 for any $n = 0, 1, 2, ...$

(c) and a unique stationary distribution $\pi \equiv (\pi_1, \pi_2, ..., \pi_d)$ where

$$\pi_i = \frac{u_i v_i}{\mathbf{u} \cdot \mathbf{v}}$$
 for any $i = 1, 2, \dots, d$.

Download English Version:

https://daneshyari.com/en/article/1154532

Download Persian Version:

https://daneshyari.com/article/1154532

Daneshyari.com