Markov limit of line of decent types in a multitype supercritical branching process

Jyy-I Hong*, K.B. Athreya
Iowa State University, United States

ARTICLE INFO

Article history:

Received 31 July 2014
Received in revised form 22 October 2014
Accepted 13 November 2014
Available online 12 December 2014

MSC:

primary 60J80
secondary 60G50

Keywords:

Branching processes
Multitype
Supercritical
Markov

Abstract

In a multitype (d types) supercritical positively regular Galton-Watson branching process, let $\left\{X_{n}, X_{n-1}, \ldots, X_{0}\right\}$ denote the types of a randomly chosen (i.e., uniform distribution) individual from the nth generation and this individual's n ancestors. It is shown here that this sequence converges in distribution to a Markov chain $\left\{Y_{0}, Y_{1}, \ldots\right\}$ with transition probability matrix $\left(p_{i j}\right)_{1 \leq i, j \leq d}$ and having the stationary distribution. We also consider the critical case conditioned on non-extinction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $\mathbf{Z}_{n}=\left(Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, d}\right)$ be the population vector in the nth generation, $n=0,1,2, \ldots$, where $Z_{n, i}$ is the number of individuals of type i in the nth generation. We assume that each individual of type $i, i=1,2, \ldots, d$, lives a unit of time and, upon death, produces children of all types according to the offspring distribution $\left\{p^{(i)}(\mathbf{j}) \equiv p^{(i)}\left(j_{1}, j_{2}, \ldots, j_{d}\right)\right\}_{\mathbf{j} \in \mathbb{N}^{d}}$ and independently of other individuals, where $p^{(i)}\left(j_{1}, j_{2}, \ldots, j_{d}\right)$ is the probability that a type i parent produces j_{1} children of type $1, j_{2}$ children of type $2, \ldots, j_{d}$ children of type d.

Let $m_{i j}=E\left(Z_{1, j} \mid \mathbf{Z}_{0}=\mathbf{e}_{i}\right)$ be the expected number of type j offspring of a single type i individual in one generation for any $i, j=1,2, \ldots, d$. Then,

$$
\begin{equation*}
\mathbf{M} \equiv\left\{m_{i j}: i, j=1,2, \ldots, d\right\} \tag{1.1}
\end{equation*}
$$

is called the offspring mean matrix.
In a discrete-time multi-type positively regular Galton-Watson branching process, by the Perron-Frobenius theorem, the matrix \mathbf{M} has a maximal eigenvalue ρ and has associated strictly positive normalized right and left eigenvectors $\mathbf{u}=\left(u_{1}, u_{2}\right.$, $\left.\ldots, u_{d}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ such that

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=1 \quad \text { and } \quad \mathbf{u} \cdot \mathbf{1}=1 \tag{1.2}
\end{equation*}
$$

The maximal eigenvalue ρ of the offspring mean matrix \mathbf{M} plays a crucial role. The process is called a supercritical, critical or subcritical branching process according as $1<\rho<\infty, \rho=1$ or $\rho<1$, respectively (see Athreya and Ney, 2004 for the details).

[^0]Now, we consider Galton-Watson branching process with a finite offspring mean matrix \mathbf{M} whose maximal eigenvalue $1<\rho<\infty$ and with no extinction. Then choose an individual at random, i.e., uniform distribution, from the nth generation and denote its type X_{n}. Let X_{n-1} be the type of its parent, X_{n-2} the type of its grandparent, etc., down to X_{0} being the type of the ancestor in the generation 0 . We show that, for any integer $k,\left(X_{n}, X_{n-1}, \ldots, X_{n-k}\right)$ converges in distribution to $\left(Y_{0}, Y_{1}, \ldots, Y_{k}\right)$ where $\left\{Y_{n}\right\}_{n \geq 0}$ is a Markov chain with a unique stationary distribution.

The work of Jagers and Nerman (1996) considers a similar process in a more general setting. However, their principal assumption is that the process has been evolving for an infinite amount of time and is already in a stable state. In this paper, we consider the case when the population has evolving up to n generations and prove a limit result about the types of the ancestors of a random chosen individual as $n \rightarrow \infty$. Thus, the work reported here is related to but different from that in Jagers and Nerman (1996).

2. Main results

The first result is for the supercritical case. Without lose of generality, we assume that each individual in this supercritical process produces at least one offspring with probability 1 upon death, that is, $P\left(\mathbf{Z}_{1}=\mathbf{0} \mid \mathbf{Z}_{0}=\mathbf{e}_{i}\right)=0$ for all $i=1,2, \ldots, d$. Thus, the probability of extinction is 0 .

Theorem 2.1. Let $1<\rho<\infty,\left|\mathbf{Z}_{0}\right|=1, E\left(\left\|Z_{1}\right\| \log \left\|Z_{1}\right\| \mid \mathbf{Z}_{0}=\mathbf{e}_{i}\right)<\infty$ for any $i=1,2, \ldots, d$. Then, for any integer $k \geq 0$, there exists a random vector $\left(Y_{0}, Y_{1}, \ldots, Y_{k}\right)$ such that

$$
\left(X_{n}, X_{n-1}, \ldots, X_{n-k}\right) \xrightarrow{d}\left(Y_{0}, Y_{1}, \ldots, Y_{k}\right) \quad \text { as } n \rightarrow \infty,
$$

and, for any $i_{0}, i_{1}, \ldots, i_{k} \in\{1,2, \ldots, d\}$,

$$
P\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{k}=i_{k}\right)=\frac{v_{i_{k}} m_{i_{k} i_{k-1}} m_{i_{k-1} i_{k-2}} \cdots m_{i_{1} i_{0}}}{(\mathbf{1} \cdot \mathbf{v}) \rho^{k}}
$$

Moreover, $\left\{Y_{n}\right\}_{n \geq 0}$ is a Markov chain with the state space $\{1,2, \ldots, d\}$,
(a) initial distribution $\lambda_{0} \equiv\left(\lambda_{0}(1), \lambda_{0}(2), \ldots, \lambda_{0}(d)\right)$ where

$$
\lambda_{0}(i)=\frac{v_{i}}{\mathbf{1} \cdot \mathbf{v}} \text { for any } i=1,2, \ldots, d,
$$

(b) transition probability $\mathbf{P} \equiv\left(p_{i j}: i, j=1,2, \ldots, d\right)$, where

$$
p_{i j}=\frac{v_{j} m_{j i}}{v_{i} \rho} \quad \text { for any } n=0,1,2, \ldots
$$

(c) and a unique stationary distribution $\pi \equiv\left(\pi_{1}, \pi_{2} \ldots, \pi_{d}\right)$ where

$$
\pi_{i}=\frac{u_{i} v_{i}}{\mathbf{u} \cdot \mathbf{v}} \text { for any } i=1,2, \ldots, d
$$

A similar result also holds for the critical case conditioned on non-extinction:
Theorem 2.2. Let $\rho=1,\left|\mathbf{Z}_{0}\right|=1$ and $E\left\|Z_{1}\right\|^{2}<\infty$. Then, for any integer $k \geq 0$, there exists a random vector $\left(Y_{0}, Y_{1}, \ldots, Y_{k}\right)$ such that

$$
\left(X_{n}, X_{n-1}, \ldots, X_{n-k}\right)\left|\left|\mathbf{Z}_{n}\right|>0 \xrightarrow{d}\left(Y_{0}, Y_{1}, \ldots, Y_{k}\right) \quad \text { as } n \rightarrow \infty,\right.
$$

and, for any $i_{0}, i_{1}, \ldots, i_{k} \in\{1,2, \ldots, d\}$,

$$
P\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{k}=i_{k}\right)=\frac{v_{i_{k}} m_{i_{k} i_{k-1}} m_{i_{k-1} i_{k-2}} \cdots m_{i_{1} i_{0}}}{(\mathbf{1} \cdot \mathbf{v})}
$$

Moreover, $\left\{Y_{n}\right\}_{n \geq 0}$ is a Markov chain with the state space $\{1,2, \ldots, d\}$,
(a) initial distribution $\lambda_{0} \equiv\left(\lambda_{0}(1), \lambda_{0}(2), \ldots, \lambda_{0}(d)\right)$ where

$$
\lambda_{0}(i)=\frac{v_{i}}{\mathbf{1} \cdot \mathbf{v}} \quad \text { for any } i=1,2, \ldots, d,
$$

(b) transition probability $\mathbf{P} \equiv\left(p_{i j}: i, j=1,2, \ldots, d\right)$, where

$$
p_{i j}=\frac{v_{j} m_{j i}}{v_{i}} \quad \text { for any } n=0,1,2, \ldots,
$$

(c) and a unique stationary distribution $\pi \equiv\left(\pi_{1}, \pi_{2} \ldots, \pi_{d}\right)$ where

$$
\pi_{i}=\frac{u_{i} v_{i}}{\mathbf{u} \cdot \mathbf{v}} \text { for any } i=1,2, \ldots, d
$$

https://daneshyari.com/en/article/1154532

Download Persian Version:
https://daneshyari.com/article/1154532

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hongjyyi@gmail.com (J. Hong), kbathreya@gmail.com (K.B. Athreya).

