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a b s t r a c t

The Wishart distribution has long been a useful tool for modeling covariance structures.
According to Gyndikin’s theorem, the degrees of freedom (df) for a Wishart distribution
can be any real number belonging to the Gyndikin set, either integer-valued or fractional.
However, the fractional-df versioned Wishart distribution has received only limited
attention, whichmay lead to inaccurate implementation in practice. This paper shows by a
numerical example that, when implementingMarkov chainMonte Carlo (MCMC)methods
in Wishart models for time series data, the lack of attention to the fractional df where
necessary can result in seriously biased posterior estimation due to the compounding
errors caused by the time dependency assumption. We further conduct a sensitivity
analysis to explain why the seemingly small difference between the integer-valued df and
the fractional df leads to very different outcomes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The (inverse) Wishart distribution has long been a useful tool for modeling covariance structures, especially in the
Bayesian inference, largely due to its conditional conjugacy property. In financial volatility modeling, Philipov and Glickman
(2006a,b), Asai and McAleer (henceforth AM, Asai and McAleer, 2009), and Ku et al. (2014) proposed a class of time-varying
covariancemultivariate stochastic volatility (MSV)models, inwhich the evolution of the covariancematrices is described by
inverseWishart processes so that BayesianMarkov chainMonteCarlo (MCMC) approachesmakemodel inference feasible. As
the inference of this class of Wishart models is conducted with MCMC, the estimation process relies heavily on the random
samples generated from a Wishart distribution. Throughout the paper, we denote the Wishart distribution as Wp(k, S),
where S is a p × p scale matrix and the scalar k is the degrees of freedom (df).

According to Gyndikin’s theorem (see e.g., Graczyk et al., 2003), any k belonging to the Gyndikin set {1, 2, . . . , p − 1} ∪

(p − 1,∞), can be a valid df for a p × p Wishart matrix, although the singular case where k ∈ {1, 2, . . . , p − 1} is used
relatively less frequently in real applications. A number of methods satisfying Gyndikin’s theorem have been proposed to
generate random Wishart matrices, such as Bartlett’s decomposition (Anderson, 2003) and its variant, the Odell–Feiveson
algorithm (Odell and Feiveson, 1966). For non-singular Wishart matrices, k ∈ (p − 1,∞) means that the df can be either
integer-valued or fractional. However, in practice, the fractional df does not usually receive enough attention. Sometimes
the use of the Wishart distribution is only focused on the integer case, where {k ≥ p, k ∈ N}, e.g., Härdle and Simar (2003),
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Johnson and Wichern (2007) and Philipov and Glickman (2006a,b). The lack of attention to the fractional df is also seen
in some statistical software packages, such as OX (Doornik, 2007), whose built-in Wishart matrix generator does not take
fractional df into account. A natural question is then raised. What is the effect of using an integer df when in truth the df of
the Wishart distribution is not integer valued? This question reflects an ‘‘implementation issue’’ which may not be noticed
by the practitioners.

Consider the following case. Suppose we need to estimate a Wishart model using MCMC methods. In the estimation
procedure, the df k is sampled from a continuous posterior distribution, which means that k can be any real number
belonging to the Gyndikin set. Now, if we take the integer df for granted, then at this step when k is sampled, we will
‘‘integerize’’ k (e.g., taking the floor value, which is the method used by OX) even though it is drawn from a continuous
density. In this case, we actually distort k from its derived posterior distribution, but unfortunately, we may not realize the
distortion, as we believe that k should be integer-valued. We show by a numerical example that, in such a situation where
k has been unconsciously distorted, the estimation process may fail to converge and, hence, the resulting inference can be
seriously biased. We further provide a theoretical sensitivity analysis to study why the seemingly small difference between
the integer k and the fractional k′

∈ (k, k + 1) can lead to thoroughly different results.
The remainder of the paper is organized as follows: Section 2 introduces Gyndikin’s theorem and offers a simulation

example to address the issue discussed above. Section 3 presents a sensitivity analysis to explain why the MCMC based
methods may fail when the df is not correctly specified. Section 4 concludes with additional remarks.

2. Effects of mistakenly integerizing the DF in Wishart variate sampling

2.1. A review of Gyndikin’s theorem

LetV be a p×p positive definitematrix and2 be an appropriate symmetric p×pmatrix. Supposewe have identically and
independently distributed random vectors Xi ∼ Np(0,V ), the scatter matrix W =

1
2

k
i=1 XiX ′

i has the Laplace transform
E

etr(2W )


= |Ip − V2|

−k. Based on Graczyk et al. (2003) and Tourneret et al. (2005), the real-matrix version of Gyndikin’s
theorem states that, the set of values for k such that |Ip − V2|

−k is the Laplace transform of a positive measure equals
G = {1, 2, . . . , p − 1} ∪ (p − 1,∞), where G is called the Gyndikin set. Thus, by Gyndikin’s theorem, we can generate
Wishart variates with any real df k belonging to the Gyndikin set. In the special case where k ∈ {1, 2, . . . , p − 1}, the
Wishart matrix is almost surely singular and its probability density function is defined in an appropriate space (Srivastava,
2003 and Díaz-García, 2007).

2.2. A numerical illustration

2.2.1. The model and the Bayesian inference
Suppose that we apply MCMCmethods to estimate a Wishart model of df k. At the l-th iteration we draw the sample k(l)

from a continuous conditional posterior distribution p(k|•). In this step, if we believe that k can only be integer-valued, then
wewill integerize k(l) to generate randomWishart matrices for subsequent sampling steps. Belowwe construct an example
to investigate the impact of mistakenly integerizing the sample k(l).

To keep our illustration simple, we consider the following model, which is a special case of AM’s dynamic correlation
MSV (DCMSV2). Following a suggestion from one of the reviewers, we assume that the shock to return ϵt is observed and
has the following dynamics

ϵt ∼ Np(0,6ϵ,t), 6ϵ,t = (diagQt)
−

1
2 Qt(diagQt)

−
1
2 ,

where the augmented covariance matrix Qt follows an inverse Wishart process

Q−1
t |k, St−1 ∼ Wp(k, St−1), St−1 =

1
k
Q−d/2

t−1 AQ−d/2
t−1 , Q0 = Ip.

Notice that the correlation matrix 6ϵ,t is obtained by standardizing the covariance matrix Qt . The parameters k and St−1
are the df and the scale matrix of the Wishart distribution, respectively. The ‘‘basic’’ matrix A is assumed to be symmetric
and positive definite. The scalar parameter d accounts for the persistence of the process {Q−1

t }. The matrix power operation
Q−d/2

t−1 is defined by a spectral decomposition.
To sample the parameters {A, d, k}, we use theMCMC procedure developed by AM. The full conditional posterior density

of the augmented variable Q−1
t is obtained as

p

Q−1

t |•


∝ Wp


Q−1

t |k̂, Ŝt−1


× f


Q−1

t


, (1)

where k̂ = k + 1 and Ŝt−1 =

S−1
t−1 + ϵtϵ

′
t

−1
denote the updated values, and the function f


Q−1

t

is a remainder term.
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