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a b s t r a c t

In the paper, a residual-based test is developed for variance components in LMM. It is
distribution-free, tractable, consistent and suitable for clustered designs and crossed de-
signs. Numerical analysis is also conducted.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following linear mixed model (LMM)

Y = Xβ + Zb + ϵ (1)

where Y is the observed n × 1 response, X is the observed n × p covariates associated with the unknown p × 1 regression
coefficient β , Z is the observed n× q covariates associated with the unobserved q× 1 random effect bwhich has mean zero
and the unknown covariance matrix D, and ϵ is the n × 1 random error vector with independent elements with mean zero
and the variance σ 2.

Since the mean of the random effects is zero, testing whether the existence of random effects is equivalent to testing the
following hypothesis:

H0 : D = 0 versus HA : D ≥ 0 and D ≠ 0. (2)

(2) is a nonstandard testing problem since the true value is on the boundary of the parameter space. In fact, there are many
literatures about testing the nullity of variance components in mixed models. In LMM for longitudinal data with the nor-
mality assumption about random effects and random errors, Stram and Lee (1994) considered likelihood ratio tests (LRTs)
where the asymptotic distributions are weighted χ2 distributionwith theweights difficult to determine and the critical val-
ues must resort to Monte Carlo (MC) method when the dimension of the tested random effect is larger than one; Giampaoli
and Singer (2009) noted that the strict restrictions of the derivation in Stram and Lee (1994) and under the same distribu-
tional assumptions, used the less restrictive results of Vu and Zhou (1997) to only obtain the asymptotic distributions of LRTs
in LMM with one or two random effects, which are the same as those in Stram and Lee (1994). Crainiceanui and Ruppert
(2004), Greven et al. (2008) and Scheipl et al. (2008) studied LMMwith crossed designs under normality assumptions where
the critical values of LRT and restricted likelihood ratio test (RLRT) also depend on the MC method and the F-tests or the
approximate F-tests are also examined which are ‘‘the least powerful among the tests under consideration’’ (Scheipl et al.,
2008). In the framework of nonlinear mixed models with clustered designs and under elliptical distribution assumptions
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(Russo et al., 2012), the score-type tests in Silvapulle and Silvapulle (1995) are adapted and the critical values also resort
to MC methods. Besides, Zhu and Fung (2004) treated this nonstandard problem as a two-sided problem and a score test
was used in the framework of semi-parametric mixed models (SMM) with clustered designs and later, Li and Zhu (2010)
proposed a difference-based test TmD which is distribution-free and tractable. Recently, Drikvandi et al. (2013) examined
LMMwith clustered designs and without distributional assumptions except for moment conditions, but the critical value of
the test still depends on the MC method.

Note that (1) and (2) encompass two special cases which are of great interest. One is for clustered designs (Stram and
Lee, 1994; Giampaoli and Singer, 2009; Li and Zhu, 2010; Nobre et al., 2013), and the other is for hierarchical and crossed
designs (Crainiceanui and Ruppert, 2004; Lin, 1997; Jiang, 2007). For the clustered designs, (1) can be rewritten as

Yi = Xiβ + Zibi + ϵi, i = 1, 2, . . . ,m (3)
where Y = (Y τ

1 , . . . , Y τ
m)τ , X = [X τ

1 , X τ
2 , . . . , X τ

m]
τ , b = (bτ
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τ
m)τ with bi being mean zero and the covariance matrix
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In the case of hierarchical and crossed designs (Lin, 1997; Jiang, 2007), Z = [Z1, Z2, . . . , Zs], b = [ατ
1 , α

τ
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τ and
then model (1) takes the form

Y = Xβ + Z1α1 + · · · + Zsαs + ϵ (4)
where ϵ = (ϵ1, ϵ2, . . . , ϵn)

τ and for k = 1, 2, . . . , s, Zk is the observed n × mk matrix associated with the mi × 1 random
effect αk which has mean zero and the covariance matrix σ 2
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Most literatures are about (3) with clustered designs. For example, Stram and Lee (1994), Giampaoli and Singer (2009),
Li and Zhu (2010) and Drikvandi et al. (2013) where a good distribution-free test is introduced for LMMs with longitudinal
data but the theoretical theory is unknown and a permutation procedure is adapted to determine the critical value. Besides,
Nobre et al. (2013) proposed a tractable U-test TmU for LMM (3) which has the asymptotic normal distribution as that of
TmD in Li and Zhu (2010) and the fourth moment of the error is not needed to estimate. Since ηnrs is not found there for (4),
the specific formula of TmU for (4) is unknown. Li et al. (2014) found that for variance components testing, there are some
differences between mixed models with clustered designs and that with crossed designs. Hence, it is of great interest and it
becomes the target to develop a tractable test suitable both for LMMs with clustered designs and that with crossed designs
without any distribution assumptions except the moment conditions.

The article is organized as follows. Section 2 describes the estimation for some parameters of interest. The residual-based
test is developed and its power property is established in Section 3. The numerical analysis is conducted in Section 4 to inves-
tigate the performance of the new test and compare it with TmD and other related tests. A concluding remark is in Section 5.
Some regular conditions and the detailed proofs, tables and figures are delayed in the Appendix and the supplement.

Before closing this section, we introduce some notations. For any matrix A, ∥A∥
2 means AτA. A− denotes the generalized

inverse matrix of A, and A+ denotes the Moore–Penrose generalized inverse matrix of A satisfying AA+A = A, A+AA+
= A+,

(AA+)τ = AA+ and (A+A)τ = A+A. Besides, let PA = A(AτA)−A and PA⊥ = I − PA where I is the identity matrix and its
dimension is the number of rows for A; rk(A) be the rank of the matrix A, and tr(B) denotes the trace of the square matrix B.

2. Estimates

Some estimates are introduced first. By the ordinary least square estimate (LSE) and the transformedweight least square
estimate (TWLSE, Li and Zhu, 2010), the estimates of β and σ 2 under the null and the alternative are respectively

β̂0 = (X τX)+X τY , β̂A = (X τPZ⊥X)+X τPZ⊥Y ,

σ̂ 2
0 =

Y τPX⊥Y
tr(PX⊥)

, σ̂ 2
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tr(PZPX⊥)

, X = PZ⊥X .

For model (3) with clustered designs, the fourth moment κ of the error is estimated by
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which can be derived by the similar method in Li (2011). For model (4), the estimate of κ is estimated as follows
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A +
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2


n
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(5)

with lij being the jth element of li and li being the ith column of the matrix PW⊥ with W = [X, Z].
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