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a b s t r a c t

Building upon the work of Chen et al. (2010), this paper proposes a test for sphericity of
the variance–covariance matrix in a fixed effects panel data regression model without the
normality assumption on the disturbances.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes testing the null of sphericity of the variance–covariance matrix in a fixed effects panel data model
which does not require the normality assumption on the disturbances. This builds on the paper by Chen et al. (2010) who
use U-statistics to test for sphericity of the variance–covariance matrix in statistics. The null of sphericity means that the
variance–covariance matrix is proportional to the identity matrix. Rejecting the null means having cross-sectional depen-
dence among the individual units of observation or heteroskedasticity or both. In empirical economic studies, individuals
are affected by common shocks. For example, investors’ decisions may be influenced by the way they interact with each
other and also by common macro-economic shocks or public policies. These potentially cause cross-sectional dependence
among the units.

In statistics, the n×n sample covariancematrix Sn iswidely used for tests of sphericity since it is a consistent estimator for
the variance–covariancematrixΣn. One could either use the likelihood ratio test, see Anderson (2003), or test the Frobenius
norm of the difference between Sn and Σn, see John (1971, 1972). However, with panel data sets where n the number of
individuals is larger than the time series dimension of the data T , the sample covariance matrix becomes singular. This
causes problems for the likelihood ratio test which is based on the inverse of Sn. Even when n is smaller than T , the sample
covariance matrix Sn is ill-conditioned as shown in the Random Matrix Theory (RMT) literature. In fact, the eigenvalues of
the sample covariance matrix Sn are no longer consistent for their population counterpart, see Johnstone (2001). Ledoit and
Wolf (2004) show that the scaled Frobenius norm of Sn does not converge to that ofΣn with n/T → c ∈ (0,∞). As a result,
John’s test, see John (1971, 1972), is no longer applicable. Hence, Ledoit and Wolf (2002) propose a new test for the null of
sphericity which could be applied even when n is relatively as large as T . However, these statistical tests for raw data are
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not directly applicable to testing sphericity in panel data regressions since the disturbances are unobservable. Baltagi et al.
(2011) extend the Ledoit and Wolf (2002)’s John test to the fixed effects panel data model and correct for the bias due to
substituting within residuals for the actual disturbances. However, their test relies on the normality assumption and their
simulation results show that the test has size distortion under non-normality of the disturbances.

To account for the possible ‘‘non-normality’’ of the disturbances as well as the ‘‘large n, small T ’’ issues in testing the
null of sphericity, Chen et al. (2010) propose a modified John test by constructing U-statistics of observable samples for
estimating trΣn and trΣ2

n . Based on their work, this paper proposes a new test for the null of sphericity of the disturbances
in a fixed effects regression panel data model. This test does not require the assumption of normality of the disturbances,
and can be applied to the casewhere n is larger than T . The limiting distribution of this test statistic under the null is derived.
Also, its finite sample properties are studied using Monte Carlo simulations.

The paper is organized as follows. Section 2 specifies the fixed effects panel data regression model and the assumptions
required. Section 3 introduces the test statistic. Section 4 derives the limiting distribution of this test statistic under the null
and discusses its power properties. Section 5 reports the results of Monte Carlo simulations, while Section 6 concludes. All
the proofs and technical details can be found in an Appendix available upon request from the authors.

Notation. ∥B∥ =

tr(B′B)

1/2 is the Frobenius norm of a matrix B or the Euclidean norm of a vector B, and tr(B) is the trace

of B.
d

−→ denotes convergence in distribution and
p

−→ denotes convergence in probability. For two matrices B = (bij) and
C = (cij), we define B ◦ C = (bijcij).

2. The model and assumptions

Consider the following fixed effects panel data regression model

yit = α + x′

itβ + µi + vit , for i = 1, 2, . . . , n; t = 1, 2, . . . , T , (2.1)
where i indexes the cross-sectional dimension and t indexes the time series dimension. yit is the dependent variable, xit
denotes the k × 1 vector of exogenous regressors, and β is the corresponding k × 1 vector of parameters. µi denotes the
time-invariant individual effectswhich can be fixed or randomand could be correlatedwith the regressors. Define the vector
of disturbances vt = (v1t , . . . , vnt)

′ and its corresponding variance–covariance matrixΣn. The null hypothesis of interest is
sphericity:

H0 : Σn = σ 2
v In vs H1 : Σn ≠ σ 2

v In. (2.2)
The alternative hypothesis allows cross-sectional dependence or heteroskedasticity or both.

For the panel data regression model, vit is unobserved, and the test statistic is based upon consistent estimates of
variance–covariance matrix, denoted by Sn or its correlation coefficients matrix counterpart, see Breusch and Pagan (1980).
Baltagi et al. (2011) extend the Ledoit and Wolf (2002) test to a fixed effects panel data model with large n and large T .
They show that the noise resulting from using within residuals rather than the actual disturbances accumulates and causes
bias for the proposed test statistic. However, their simulations show that their test is oversized under non-normality of the
disturbances. This paper extends Chen et al. (2010) to test the null of sphericity of the variance–covariance matrix of the
disturbances in a fixed effects panel data regression model without assuming normality of the disturbances. We use the
within residuals which are given by

v̂it = ỹit − x̃′

it β̃ = vit − v̄i· − x̃′

it


β̃ − β


, (2.3)

where x̃it = xit − x̄i· and x̄i· =
1
T

T
t=1 xit . Similarly, ỹit = yit − ȳi· , ȳi· =

1
T

T
t=1 yit , and v̄i· =

1
T

T
t=1 vit . The within

estimator of β is given by β̃ =

T
t=1
n

i=1 x̃it x̃
′

it

−1 T
t=1
n

i=1 x̃it ỹit

. Let ỹt = (ỹ1t , . . . , ỹnt)′, v̂t = (v̂1t , . . . , v̂nt)

′, v̄· =
v̄1·
, . . . , v̄n·

′, and x̃t = (x̃1t , . . . , x̃nt). The within residuals can be rewritten in matrix form as v̂t = vt − v̄· − x̃′
t


β̃ − β


.

To facilitate our analysis, we require the following assumptions:

Assumption 1. The n × 1 vectors v1, v2, . . . , vT are independent and identically distributed (i.i.d.) with mean vector 0 and
covariancematrixΣn = Γ Γ ′, whereΓ is an n×m (m ≤ ∞)matrix, vt can bewritten as vt = Γ Zt , where Zt = (zt1, . . . , ztm)
are i.i.d.random vectors with mean vector 0 and covariance matrix Im. We also assume that each vit , for i = 1, . . . , n has
uniformly bounded 8th moment and there exists a finite constant∆ such that E(z41l) = 3 +∆, for l = 1, . . . ,m.

Assumption 2. The regressors xit , i = 1, . . . , n, t = 1, . . . , T are independent of the idiosyncratic disturbances vit , i =

1, . . . , n, t = 1, . . . , T . The regressors xit have finite fourth moments: E[∥xit∥4
] ≤ K < ∞, where K is a positive constant.

Assumption 3. As (n, T ) → ∞, tr(Σ2
n ) → ∞, tr(Σ4

n )/tr
2(Σ2

n ) → 0.

The asymptotics follow the framework employed by Chen et al. (2010). Assumption 3 requires tr(Σ4
n ) to grow at a slower

rate than tr2(Σ2
n ). This assumption is flexible. In fact, if all the eigenvalues ofΣn are bounded away from zero and infinity,
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