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a b s t r a c t

This paper investigates two robust estimators of the scale parameter given data from a
stationary, long range dependent Gaussian process. In particular the limiting distributions
of the interquartile range and related τ -quantile range statistics are established. In contrast
to single quantiles, the limiting distribution of the difference of two symmetric quantiles is
determined by the level of dependence in the underlying process. It is shown that there is
no loss of asymptotic efficiency for the τ -quantile range relative to the standard deviation
under extreme long range dependence which is consistent with results found previously
for other estimators of scale.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Accurate estimation of scale plays a critical role in the analysis of time dependent data. It is well known that the classical
standard deviation is not robust to outliers, where even a single outlier can have a severe effect, see, for example Tsay (1988),
Chan (1995) and Maronna et al. (2006, Chapter 8).

Long range dependent (LRD) time series form an important class of dependent observations. Applications involving LRD
processes are found in a diverse range of settings, such as the analysis of network traffic, heartbeat fluctuations, wind turbine
output, climate and financial data, to name just a few. For some recent examples we refer to Park et al. (2011), Ercan et al.
(2013) and Beran et al. (2013).

The distinction between short and long range dependence is due to the behaviour of the autocovariance decay rate.
In particular, let {Xi}i≥0 be a stationary time series and let γ (h) be its autocovariance function at lag h and define the
scale parameter, σ =

√
γ (0). The sequence {Xi}i≥0 is said to be of long memory if its autocovariances are not summable,

h≥0 |γ (h)| = ∞. LRD processes are characterised by spurious trends, self-similarity and an autocovariance function that
exhibits a slow hyperbolic decay, γ (h) ∼ h−D for D ∈ (0, 1).

Formally, let {Xi}i≥0 be the stationary, mean-zero, linear Gaussian process, Xi =


∞

j=0 ajεi−j, where a0 = 1,


∞

j=0 a
2
j < ∞

and the innovations, {εk}k∈Z, are i.i.d. mean-zero Gaussian random variables with variance var(ε1) = σ 2
ε < ∞. Assume,

without loss of generality, E(X2
0 ) = 1. The resulting sequence is long range dependent if aj ∼ jd−1La(j) for d ∈ (0, 1/2)

where La is a slowly varying function at infinity. In which case γ (h) = E(X0Xh) ∼ h−DL(h), where D = 1 − 2d is the
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Fig. 1. Empirical densities of normalised scale estimates for ARFIMA(0, 0.1, 0) models,
√
n(S−σ), (left) and ARFIMA(0, 0.4, 0) models, n0.2(S−σ), (right)

over 100,000 replications of samples of size n = 1000.

autocovariance decay rate, D ∈ (0, 1), and L(h) = σ 2
ε L

2
a(h)k(D), where k(D) = Beta(D, d) = Γ (D)Γ (d)/Γ (D + d), see for

example Beran et al. (2013, Lemma 2.1). The notation an ∼ bn means that an/bn → 1 as n → ∞.
This paper presents a new limit result for the τ -quantile range, an important special case being the interquartile range.

Let Fn(x) = n−1n
i=1 I{Xi ≤ x} be the empirical distribution function with corresponding quantile function, F−1

n (p) =

inf{r : Fn(r) ≥ p} for p ∈ (0, 1). Define the empirical τ -quantile range as, θn = dτ [F−1
n (1 − τ) − F−1

n (τ )], for τ ∈ (0, 1/2),
where dτ = 1/[2Φ−1(1− τ)] is a correction factor to ensure consistency for the standard deviation when the observations
follow a Gaussian distribution. Note that when τ = 1/4, we recover the interquartile range.

WhenD ∈ (1/2, 1)we establish a normal limit result for θn. In contrast, whenD ∈ (0, 1/2), the limiting distribution is no
longer normal. This result is somewhat surprising given that individually the quantiles of a LRD process have normal limit
distributions for all D ∈ (0, 1) and as such, it may be reasonable to expect that the τ -quantile range under LRD follows a
normal distribution for allD ∈ (0, 1). To explain this discrepancy forD ∈ (0, 1/2)we show that the secondorder terms in the
Bahadur representation of sample quantiles play an important role in the limiting distribution of differences of symmetric
quantiles.

We also consider the estimator Pn, the τ -quantile range of the pairwise means (Tarr et al., 2012). Given a set of n
observations, X1, . . . , Xn, the set of n(n − 1)/2 pairwise means is {(Xi + Xj)/2, 1 ≤ i < j ≤ n}. Let G(r) = P(X1 + X2 ≤ 2r)
be the cumulative distribution function of the pairwise means with corresponding empirical distribution function,

Gn(r) =
2

n(n − 1)


i<j

I{Xi + Xj ≤ 2r}, for r ∈ R.

For p ∈ (0, 1), define the corresponding U-quantile as G−1(p) := inf{r : G(r) ≥ p} and hence the pth sample quantile is
G−1
n (p) := inf{r : Gn(r) ≥ p}. The general form of the scale estimator Pn is,

Pn = cτ

G−1
n (1 − τ) − G−1

n (τ )

, for τ ∈ (0, 1/2), (1)

where cτ is a correction factor to make Pn consistent for the standard deviation under the Gaussian distribution. Tarr et al.
(2012) highlight the robustness and desirable efficiency properties of the Pn estimator when the data are independent and
follow a Gaussian distribution. The estimator Pn, and variants thereof, have also been used in the context of precisionmatrix
estimation under cellwise contamination, see Tarr et al. (submitted for publication).

When D ∈ (1/2, 1) we obtain a normal limit result for Pn and we motivate the need for a Bahadur representation for
U-quantiles under long range dependence to establish a non-normal limit for the D ∈ (0, 1/2) case. Again, this difference
in behaviour is surprising given that Lévy-Leduc et al. (2011a) show that the Hodges–Lehmann estimator, the median of the
pairwise means, has a normal limit distribution for all D ∈ (0, 1) and it is simple to show that the same limit distribution
applies to other quantiles of the pairwise means.

The results can be seen graphically in Fig. 1 where the data generating process is an ARFIMA(0, d, 0) model. On the left
panel d = 0.1 so D ∈ (1/2, 1) and the limiting distributions for the various scale estimators are normal. On the right panel
d = 0.4 so D ∈ (0, 1/2) and the limiting distributions are non-normal.

Our findings are in line with what has been found for other robust scale estimators. The Shamos–Bickel scale estimator
is proportional to the median of the interpoint distances, σ̂SB = amedian{|xi − xj|; i < j}, where a is a correction factor to
ensure consistency for the standard deviation at the normal (Shamos, 1976; Bickel and Lehmann, 1979). A related estimator
Qn, proposed by Rousseeuw and Croux (1993), is asymptotically proportional to the first quartile of the interpoint distances,
Qn = b {|xi − xj|; i < j}(k), where b is a correction factor and k ≈

 n
2


/4 for large n. Lévy-Leduc et al. (2011a,b) show that

both robust scale estimators have a normal limit distributionwhenD ∈ (1/2, 1) and the same non-normal limit distribution
as the standard deviation when D ∈ (0, 1/2) with no loss of asymptotic efficiency.

It is important to note that the results found for the Shamos–Bickel scale estimator and Qn mentioned above are based on
the analysis of a single U-quantile. In Sections 2 and 3 we present theorems that give the limiting distribution of differences
of two quantiles or U-quantiles based on LRD processes. In order to apply existing LRD limit results we establish various
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