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a b s t r a c t

Changing time of simple continuous-timeMarkov counting processes by independent unit-
rate Poisson processes results in Markov counting processes for which we provide closed-
form transition rates via composition of trajectories and with which we construct novel,
simpler infinitesimally over-dispersed processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The statistical analysis of dynamical systems plays an important role in scientific research. When these systems involve
counts, such analysis may be carried out using continuous-time Markov processes, which are often approximations to real
systems and hence fail to capture some features of real data. Luckily, some of these features may be better captured after
replacing time in those processes by a Markov random time. Such a time randomization approach to improving statistical
modelingwas recently proposed and studied in detail in Bretó and Ionides (2011), where the resultingMarkov time-changed
processes are defined via transition rates. Unfortunately, transition rates of such time-changed processes are in general
unavailable and can be difficult to obtain in closed form. This lack of closed-form transition rates limits the appeal of this
time randomization approach andmay even discourage applied researchers from using it at all. To help make this approach
more appealing, this paper considers changing by a Poisson process the time of a large family that includesmany continuous-
time Markov counting processes used in applications (for example from epidemiology, biochemistry or sociology). For the
resulting time-changed process, transition rates are provided in the required closed form. These closed-form transition rates
constitute the main result of this paper, which we obtain by composing trajectories of the counting process with those of
the random time (instead of by integrating out the random time). Our choice of a Poisson time change seems to be unusual
in the applied literature and produces time-changed models simpler than those previously considered, as we illustrate by
constructing several novel over-dispersed counting processes,which can be used as building blocks to constructmultivariate
over-dispersed Markov counting systems.

Dynamical systems that involve counts have been studied in many disciplines by considering Markov counting systems
without simultaneous events, although compound systems (which allow simultaneity) have also received some attention.
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Fields where counting systems have been modeled as continuous-time Markov chains include epidemiology and ecology
(Kermack andMcKendrick, 1927; Shrestha et al., 2011), pharmacokinetics (Matis andWehrly, 1979; Haseltine and Rawlings,
2002; Srivastava, 2002) and engineering and operations research (Doig, 1957; Jackson, 2002). In these fields, most such
processes are in fact Markov counting systems (Bretó and Ionides, 2011), mainly networks of queues (Brémaud, 1999) that
are often referred to as compartmental models in the biological sciences (Jacquez, 1996; Matis and Kiffe, 2000) and that rule
out the possibility of simultaneous transitions or events. When simultaneous events are possible, these counting systems
are called compound (Bretó and Ionides, 2011).

Compound counting systems can capture better the variability in real data thanks to being infinitesimally over-dispersed
and have been constructed relying on random time changes and defined via closed-form transition rates, which is what this
paper is concerned with. Compound Markov counting systems have been considered as a means to increase compatibility
of theoretical models with real data, for example in the context of DNA sequence alignment and genomic data (Thorne
et al., 1992) and of environmental stochasticity and epidemiological data (Bretó et al., 2009). They are also infinitesimally
over-dispersed (Bretó, 2012a), which is a feature of these systems that is favored by infectious-disease data (Bretó et al.,
2009; He et al., 2009; Ionides et al., 2006; Shrestha et al., 2011). In this context, over-dispersion requires that the variance-
to-mean ratios of random variables counting events over some time interval be larger than the ratios implied by some
reference (e.g., Poisson) counting random variable (McCullagh and Nelder, 1989). However, infinitesimal over-dispersion
requires in addition that over-dispersion does not vanish as the length of this time interval tends to zero. Such infinitesimal
over-dispersion can be modeled with compound processes, which can be constructed under mild conditions (Bretó, 2012b)
via the well-known operation of random change of time. Such time randomization approach was considered in detail in
Bretó and Ionides (2011), after being first illustrated in Bretó et al. (2009) where a compound compartmental model was
constructed and defined by transition rates expressed in closed form. Investigating such closed-form rates for other models
in general is our main concern.

The problem that this paper addresses is the difficulty deriving closed-form transition rates of time-changed processes,
which lies in the non-linearity of expected values of transition probabilities and which limits the appeal of time
randomization in applications. Transition rates of Markov counting processes can be understood as appropriate limits of
transition probabilities (Brémaud, 1999). These probabilities are most likely non-linear in time. After time is randomized,
transition rates are instead determined by the expected transition probabilities (with respect to the randomized time), but
such expected values need not be readily available in closed form due to the non-linearity. Consider a unit-rate Poisson
process whose time index t is changed by random time R(t). Its expected probability of k transitions over time interval [0, l]
is the left hand side of (1) below, which is an analytic expression. A corresponding closed-form expression can be obtained,
for example, assuming that {R(t)} is a gamma process with E [R(t)] = t and V [R(t)] = t/τ . Such expression is (if Γ is the
gamma function)

ER

R(l)ke−R(l) /k! = Γ (l/τ + k) /


k! Γ (l/τ) (1 + τ)l/τ


1 + τ−1k , (1)

as derived in Bretó and Ionides (2011) and in Kozubowski and Podgórski (2009). However, this closed-form expression
is based on derivations specific to the Poisson gamma process of this example and it need not extend straightforwardly to
other random times or counting processes (like the non-linear death processes considered in Section 3). Seemingly technical
difficulties like this one can prevent applied researchers from randomizing time.

The discouraging limitations imposed on time randomization by unavailable closed-form expressions stem from the
necessity to define time-changed models as implicit hierarchies and the resulting complications on model interpretation,
which we seek to alleviate in this paper. Implicit definitions of a model are those given in terms of numerical procedures
to generate realizations or sample paths (Bretó et al., 2009), e.g., for our Poisson gamma example above, a realization at
time t would come from the following hierarchy of random draws: use a value drawn from a gamma random variable with
mean t (and variance t/τ ) as the mean of a Poisson random variable from which to draw the desired process realization.
Implicit definitions like this one are all that is needed to do inference using ‘‘plug-and-play’’ methods (Bretó et al., 2009),
without the need to work out any closed-form expressions like (1). However, implicit models can be harder to interpret.
Consider what an applied researcher might ask when deciding what to make of and how to interpret results obtained from
an implicit model: Is the time-changed model well-behaved? What aspects of the original model vary after changing time?
Should interpretation of the original parameters change? How does the choice of time change affect the answers to these
questions? Interpretation issues like these might be tackled considering implicit definitions only but answers may reflect
numerical artifacts and may not be as apparent as with closed-form expressions, as illustrated in next section. Helping
mitigate such interpretation issues to make time randomization more attractive is the ultimate goal of this paper.

The main contribution of this paper is to provide closed-form transition rates for a large family of Markov counting
processes time-changed by Poisson times via composition of trajectories and to illustrate how these closed-form rates
facilitate the use of time randomization to improve Markov counting systems used in applications. The sought closed-
form expressions are provided in Section 2 under mild requirements satisfied by many well-behaved processes considered
in the applied literature. These expressions provide the desired details about the time-changed process to help address
interpretation issues, promoting the use of time randomization. They are obtained by focusing on process trajectories to get
around non-linear expectations like (1), for which the unusual Poisson time change turns out to be convenient. Not only
does our Poisson time choice facilitate the derivation of the expressions, it also avoids increasing the number of parameters,
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